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A FEEDBACK CONTROL MODEL FOR NETWORK FLOW

WITH MULTIPLE PURE TIME DELAYS

Jacques Press

ABSTRACT

A control model describing a network flow hind-
ered by multiple pure time (or transport) delays is
formulated. Feedbacks connect each desired output
with a single control sector situated at the origin.
The dynamic formulation invokes the use of differen-
tial-difference equations. This causes the character-
istic equation of the modelto consist of transcendental
functions instead of a common algebraic polynomial.
A general graphical criterion is developed to evaluate
the stability of such a problem since the literature is
evasive in the case of multiple coupled delays. A
digital computer simulation later confirms the valid-
ity of such criterion. An optimal decision-making
process with multiple delays serves as an application
of the analytical effort.
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SECTION I

INTRODUCTION

A. PROCESSES WITH MEMORY AND ANTICIPATION; THE
DIFFERENTIAL-DIFFERENCE EQUATION

In concept, there exists a wide class of mathematical processes which op-
erate in the present using knowledge acquired from the past as well as informa-
tion obtained from the future. This reveals the presence of memory, the ability
to remember the past, as well as anticipation, the ability to predict the future.
If these processes are to be realizable in our world then they must obey the law
of causation: the cause of things must come before their effect. A chronological
order is imposed and the processes, in this case, "follow their own destiny."
The capacity to anticipate is suppressed and only present and past states are
now considered. Despite this restriction, the realization of a man-made process
or system* operating in the present using knowledge from the past is an elegant
concept since it simulates the way humans learn and think.

Processes with memory can be expressed mathematically by an interesting
class of equations: the differential-difference equations, involving derivatives
along with differences. The literature on such special mathematics embraces
many disciplines and spreads over three centuries in research. The earliest
work available is that of Bernoulli,lt who in 1728 was studying oscillatory mo-
tion of strings. In applied mathematics, famous names like Lagrange2 , Poisson3

and Cauchy are often associated with equations of differential-difference form.
They are reflected by today's contemporaries in this field such as Bellman and

5 6 7 8
Cooke , Pinney , Ogutzoreli , and Wright . Phenomena possessing memory have
also been studied in the physical sciences by Bateman9 in radioactivity, Gerasimov'0
in heat conduction, Lagrange1

1 in sound propagation, Arley'2 in cosmic radiations,
13 14 15 16 1Minorsky 3, Nisolle , Volterra , Picard , and Satche 17all in mechanics and

elasticity. In biolo~, one finds differential-difference equations applied to the
renewal process , natural and artificial selection , and the fight for
survival .

*For convention purposes, appendices A and B provide basic definitions for the word system and
its associated prefixes, such as feedback and control, in context with this work. Figure 1 illus-
trates these definitions.

tA superscript indicates a reference number appearing in the bibliography.
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Economists have also made contributions with these special equations. To
mention a few, Frish2 2 in economic dynamics, Kalecki 23 in business cycles,
James and Belz,

2 4 Samuelson2 5 , Bateman 26 in retail trade theory, Theiss 2 7

in the study of savings and investments, and Tinbergen2 8 in the modeling of
ship-building cycles are all notable names.

B. THE DELAY PROBLEM

In modern times, operational models with transport or time delays form
the new vocabulary for procedures governed by differential-difference equa-
tions. A delay means that one or more operations are temporarily suspended
in time due to some constraints.

In engineering, one can cite numerous references on time-delay problems:
Tsien2 9 in rocketry, also Smith3 0 in electrical systems, Truxal 3 1 in electrical
signals, Rogers and Connolly3 2 in analog computers, Huggins 33 in systems dy-
namics, Oetker3 4 , Paul3 5 , Caughanowe and Koppe13 6 , and Tyner 3 7 all in
process control for the chemical industry. Most recently, the time-delay prob-
lem has found application in the theory of artificial intelligence. 38

C. THE DELAY PROBLEM AND THE MANAGEMENT FUNCTION

As far as management analysis is concerned, it is well-known that prac-
tical trends in the U.S. are brought about by two schools of thought: those who
practice the case method, relying on past cases, and those who favor the quan-
titative approach, relying on analytical knowledge gained by studying physical
systems. The first method is reflected by the Harvard circles while the second
one is practiced by the Stanford and MIT groups. Forrester 39 in applying the
latter method at MIT has stressed the importance of time delays in industrial
dynamics such as production, inventory and sales.

The new field of Operations Research, still part of the quantitative approach,
renders time-delay problems imminent firstly in the network flow analysis where
minimum transition time is usually the objective and secondly in Queueing and In-
ventory Theory40 . Prabhu4 t has considered similar mathematics in his work on
models for dams and grain storage.

D. THE GENERAL OBJECTIVE OF THIS RESEARCH

In the real world, autonomous organizations are confronted with the daily
task of applying continuous improvement mechanisms in order to enhance the

2



viability of their working processes. Such strategy involves tactical efforts on
the part of decision-makers. Faced with commitments and schedules, the
management firstly evaluates the input resources at hand, secondly applies a
planned intervention, and finally seeks feed-back, which is often delayed in time,
in order to determine the effectiveness of the motion taken.

Such a philosophical management model has possible application in the
following:

1. Transportation networks suffering delays in schedule.

2. The administration of federal, state or local programs where a compli-
cated bureaucracy often delays needed resources such as monetary
funds.

3. Administrative control of the economy such as the imposition of ceilings
on prices and wages. In this case, feedback of the results created is
heavily delayed due to the complexity of the economic sector.

This paper intends to highlight the above applications through mathematical
modeling. The effort illustrates the decision-making process involved in a
network flow containing information and resource channels hindered by coupled
pure time delays.

3
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SECTION II

MATHEMATICAL BACKGROUND

A. ASSUMPTIONS LEADING TO THE DIFFERENTIAL-DIFFERENCE
EQUATION

One can interpret processes with memory and anticipation using the follow-
ing general functional equation:

I [Y (x, t)] = f {Y (t), y (t + tl (t)),

Y (t i t 2 (t)), ''y (t ± t n (t)),

(1)
x (t), x (t + tl (t)), x (t i t 2 (t)) ...

(t i t n (t))},

where · is a generalized n t h order (n > 0) linear or non-linear, differential or
difference, partial or ordinary operator. y and x are vectors of the- various
dependent and independent variables (functions of time) respectively. t], t 2 ,

.. t, represent backward or forward delays in time, themselves possible
functions of time. Terms like y (t + t n (t)) signify that y is evaluated at a time
t shifted in the future by +tn (t), or in the past by -t, (t). Such a formulation
must also be accompanied with proper initial, boundary and constraint conditions.

Unfortunately, no tools are available to fully treat eq. (1). Simplifying as-
sumptions must be made. If one is restricted to a realizable, i.e. non-anticipatory,
linear, i.e. the principle of superposition holds, deterministic (non-probabilistic)
system and furthermore, if the dependent variables are functions of time only,
and having constant coefficients along with constant delays then eq. (1) reduces
to the following differential-difference equation:

D [x (t)] = f {x P (t - t),(t- t2), x (t - tn), x (t), t} (2)

Preceding page blank 1
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where

D [ I = nd + a dn- 1 1+ +'' + a
dt n dt n 1 I

is the linear ordinary differential operator, with the a's being constant coefficients.

If, in addition, the process is instantaneously dependent on just the present
state, then eq. (2) further reduces to the ordinary differential equation which
traditionally governs countless mathematical models:

D [x (t)] = f (x, t). (3)

Eq. (3) is indeed restricted when compared to eq. (1).

Equation (2), which assumes present and past states, is expressed explicitly
for a single input-output system as:

ad "
n - 1 xx d x(t) + (t) + b x(t - t) + +b 2 x (t - t2 )dan x(t) + a n-i21 dt-

(4)
+ · .. + b n x (t - tn) + u (t),

where u(t) is a prescribed input activating the process. The a's and b's are
constant coefficients.

B. THE LAPLACE TRANSFORM OF A DIFFERENTIAL-DIFFERENCE
EQUATION

Since Eq. (4) is linear it can be transformed to a simple polynomial form
using the well-known Laplace Transform, £. Remembering that

[ df (t) = S and £ [f (t - tl)] = e
-st1

6
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Eq. (4) becomes:

an sn 1 a + + a
1

= bo + b e - tl + b2 et2 + b e - s tn

+ £ {u (t)} (5)

(e = 2.7 .. )

One obtains the characteristic equation of the system that eq. (4) governs by
rearranging eq. (5) and suppressing the input. Therefore,

F(s, es ) = ansn + an 1 Sn -l + .al s - bo - ble-Stl b2e-St2 - bne-Stn = 0(6)

is called characteristic to the system because it describes the free behavior,
the outside input being suppressed. This equation helps determine stability, a
salient feature in any system study, as later shown.

C. THE MATHEMATICAL FORM OF THE PURE TIME DELAY

Terms containing e - s in eq. (6) correspond to the various transport lags or
delay terms such as y (t - ti) present in eq. (4). The syntax of the word "time-
delay" is often misleading due to the existence of numerous synonyms. Depend-
ing on the field of study, the following definitions occur in the literature:

(1) distance-velocity lag (Mechanics)

(2) retarded action (Mechanics)

(3) dead time (in Electrical Engineering)

(4) transport lag or delay (in Transportation Science)

(5) pipe-line delay (in Chemical Engineering)

(6) iddle period (Operations Research)

7



(7) pure time delay (Applied Mathematics)

(8) retarded argument (Applied Mathematics)

(9) translation operator (Applied Mathematics)

They all refer to the same transformation:

pure-time delay
y (t) --*I~ Y (t - tl)

L of period t 1 l

The confusion arises when another function is mentioned: the phase or time lag.
The latter is called, at a loss, an exponential delay.3 9 Various such transforma-
tions are illustrated in Figure 2. The first-order time lag 1/(s T + 1), for in-
stance, produces an output at the instant the input activates it. The pure time
delay e- s t , on the other hand, does not respond for a time period tl after the
input activates it, and only then, the response comes out as the exact image of
the input.

This work will adopt the following notation:

[f (t - tl)]= e = pure time delay (which concerns

most of this research)

1[et/l] = simple time lag (1S t order)
s 1 + 1

8



SECTION III

THE NETWORK FLOW GRAPH METHOD FOR
PROCESSES WITH PURE TIME DELAYS

A. FROM THE DIFFERENTIAL-DIFFERENCE EQUATION
TO A FLOW GRAPH

Instead of working directly with a differential-difference equation it is pos-
sible to manipulate its Laplace equivalent, in a graphical form. As an illus-
tration, consider the following coupled system of differential-difference equations
having a pure time delay and a simple time lag:

xl (t)= a prescribed function, f (t), (7)

serving as an input.

x2 (t) = (t) - a x6 (t) (8)

X3 (t) =K k2 (t) (9)

x4 (t) = e - t/ X3 (t) (10)
(time lag)

X (t)= X4 (t) = 4 (t)dt (11)

x6 5 ( t - tl) (12)
(pure time delay)

(') signifies d/dt. K, A, T and t I are constants. The Laplace transforms to
equations (7-12) are:

X1 (s) = F (s) (13)

9



s X2 (s) = s X1 (s) - a X6 (s)

s X3 (s)= K s X2 (s)

1
S X4 (S) · s X3 (s)

1
X5 (s) = X4 (s) _'s X4 (s)

X6 (s) =e 1 X5 (s)

(15)

(16)

(17)

(18)

Utilizing the flow graph method exposed in Appendix C, eqs. (13-18) can be
represented by the network flow appearing in Figure 3a. Such a graph consists
of three major terms, shown in a brief version in Figure 3b as:

he series product of all
H (s) = H = -= erms in cascade excluding

T s + 1 Sthe pure time delay,

-st 1

D (s) = D = e ' = the pure time delay,

G (s) = G = - a = the feedback loop.

the}

(19)

(20)

(21)

B. THE TRANSFER FUNCTION FOR A SINGLE PURE
TIME DELAY PROBLEM

Applying Mason's Loop Rule (see Appendix C) it is possible to obtain the
transfer function (T.F.) defined in Appendix B for the system in Figure 3b as
follows:

10
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Pi =HD

L1 =-HDG

A -L= - 1 +HDG

A 1 = 

where P1 is the only forward path, L1 is the only
determinant, and A1 is the cofactor. Thus

N= P Ai

T. F. F. P i i
i

Setting the denominator of equation (26) equal to
equation for the process:

feedback loop factor, A is the

HD
1 +HDG

(26)

zero, yields the characteristic

1 + H D G = 1 + H (s) D (s) G (s)

(27)
a K .1 -stl = 

-1 - +K e 0 e
(-s + 1) s

(C) THE CASE OF MULTIPLE TIME DELAYS:

Consider a more complicated case. One can allow for two pure time delays
as shown in Figure 4a. For this case one has, again for Mason's Loop Rule:

P1 = H1 D1

P2 = H2 D2

L1 = - H1 D1 G1

(28)

(29)

(30)

11

(22)

(23)

(24)
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(31)L2 = - H2 D2 G2

A = 1 - (L1 + L2 ) = 1 + H1 D1 G1 + H2 D2 G2

A = 1

A2 =1

(32)

(33)

(34)

and the T.F. is:

T. F. =
H1 H2 D1.D2

(35)
1 + H1 D1 G1 + H2 D2 G2

This problem can be said to be a trivial extension of the single delay case. This
is so because it can be separated into two single delay problems as shown in
Figure 4b. The two loops are not coupled since the output of the first system is
directly used as the input to the second one and the latter has no feedback in-
fluence on the first one. If coupling is present however then the system is not
trivial. Figure 4c shows the non-trivial case for two delays. For this flow
graph, one has:

P1 = H1 H2 D1 D2 (36)

P2 =0

L1 = - H1 D1 G1

(37)

(38)

L2 = - H1 H2 D1 D2 G2 (39)

A = 1 - (L1 + L 2 ) = 1 + HI D1 (G1 + H2 G2 D2)
(40)

(41)A1 =

12



and therefore,

T. F. = i H= H2 D1 D2 (42)
A 1 + Hi D1 (H2 G2 D2 + G1 )

Extending the work to a non-trivial problem with N delays, the flow is
shown in Figure 4d. Its general T.F. can be shown to take the form:

N

TTHi Di

T. F. = i=l (43)

1+, [Gjf H
i

D]
j=l i=l

where
N

2. = summation of terms over the j index from 1 to N,
j=1

N
T- = product of terms over the i index from 1 to N.
i=1

-st
Di = e i (pure time delay)

G. = feedback terms

Hi = product of all terms in each i t h forward path between nodes, ex-
cluding each Di .

If one .sets the denominator of equation (43) equal to zero then the result yields
the characteristic equation for the general non-trivial case:

N j

F (s, eS) =1 1+1 [GJT H Hi 0 (43a)
j= 

with Gj and Fi containing algebraic terms in s, and Di containing the exponential
terms e st' As an illustration, if three non-trivial pure time delays are
present then equation (43a) takes the form for N = 3:

F (s, e s ) = 1 + G1 H1 D1 + G2 Hi H2 D1 D2 + G3 H1 H2 H3 D1 D2 D3

1+Gl~s)H 1 (s · -st 1 -s (tl+t2)= 1 + G1 (s) H1 (s) e 1+ G2 (s) H
i

(s) H
2

(s)' e

-s 3 s H(tl+t 2+ t3) (43b)+ Ga (s) H1 (s) H2 (s) H
a

(S)'.e 0

13



pr1lN(; PAGE BANK NOT Mfi1

SECTION IV

THE STABILITY OF PROCESSES

HAVING PURE TIME DELAYS

A. DEFINITIONS

A linear system is defined as stable if the time function representing its
response to a simple impulse input remains bounded in amplitude as t -co , and
unstable otherwise. More important, a stable system is asymptotically stable
if its impulse response tends to zero as t - co . Since the transient response
resulting from an arbitrary input, or disturbance, can contain only time func-
tions of the type which occur in the impulse function, it is a corollary to this
definition that an asymptotically stable linear process will eventually return
to equilibrium for any transient disturbance. It can also be shown that the out-
put of an asymptotically stable process will remain bounded if the input is
bounded. In the real world, processes are not created to simply be stable for
a short period. They must be stable in the long run. Therefore asymptotic
stability (t - co) is the prime objective. To shorten notation, in the rest of this
work the word stable will signify asymptotically stable. Finally if a system is
stable one desires to know how close it is to being unstable. This is the addi-
tional concept of relative stability as compared to absolute stability, previously
discussed.

B. SURVEY OF THE LITERATURE ON STABILITY:

Numerous criteria based on the previous definitions are available to
provide an answer to the question of stability for linear systems. These methods
are either analytical or graphical. Basically, they all start with the character-
istic equation derived by Laplace transformation. Traditionally, the analytical
approach is reflected in the Routh and Hurwitz criteria and the Root-Locus
method. The first two answer the question of absolute stability while the last
one determines relative stability. On the other hand, names like Nyquist, and
Bode often appear when the graphical approach is selected. Numerous other
criteria have also been derived. 42

Preceding page blank
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(i) The Analytical Methods:

The Routh and Hurwitz criteria give fast results 43 for the following
characteristic equation:

ao + al s + + a
2

S2 + a+ a + a * .a n = 0 (44)

where the a.'s are constants. This equation corresponds to a process governed
by ordinary differential equations with no differences, and where n, the number of
roots of equation (44), is finite.

The exponential terms in equation (43a), on the other hand, are periodic by
definition:

-st 1 -(Cr+ic)tl -= t
1

-i*t1

e e e 

-Crt 1 'i(otl 1+2n7Tr)
= t e-i (n = 0 1, ±2...) (45)

(i = -1 )

and thus equation (43a) is transcendental with an infinite number of roots.

Although the stability requirements are the same for a purely algebraic
characteristic equation as well as for one with exponential terms, the finite
analytical criteria fail to give exact results for the latter. This is due to the
presence of the infinite order polynomial which represents the exponential as
follows:

-st t s2 ts2 3 s 3

e = 1 - t 1 s + 2!- + (46)
2 3 !

Attempts have been made to approximate e -
s

t ', by truncating this Taylor series
expansion. This approximation has been shown to be contradictory. Choksy4 4

demonstrated that, depending on where one truncates the series, the process
can be found to be both stable and unstable when the Routh criterion is later ap-
plied, for instance. Other approximations to e- s ti, have been derived in order
that the Routh criterion can handle it. Truxal3 l discusses various ones
in increasing order of sophistication. Firstly, he starts with the exponential
function expressed as a limit:

16



e I = 1 im (47)

but mentions its weakness at n 3. Secondly, he proposes the n series

but mentions its weakness at n = 3. Secondly, he proposes the McLaurin series
approximation as:

-tls 1 (48)

t s2 t3 s 3

1 + t s + --- + ...2! 3!

which is derived from the previous Taylor series expansion, again with limi-
tations. Thirdly, the Pade approximation table is presented. This is a ratio of
two finite polynomials with selected coefficients (see Figure 5). One can choose
any one fraction in this table as an approximation to e- s . The higher order poly-
nomials in the numerators or denominators produce a better accuracy. The
Pade approximation and its extension, the technique of Single and Stubbs
which produces a similar ratio, are favorite methods in industry.3 2 ' 3 5

Instead of customizing the troublesome exponential to the Routh criterion,
an effort has been directed to the root locus technique. Kral 4 6 ' 4 7 was initially
interested in the roots of transcendental equations from an involved mathematical
point of view. Finally in 1967, he produced a digital algorithm4 8 used to generate
the root locus diagram for an equation having an e - s term. Such studies were
pioneered by Chu4 9 in 1952.

All of these works, so far, have considered only the case of the single pure
time delay, thus providing restricted results. Contributions to the problem of
multiple delays are very rare, probably due to the fact that most real-world
applications assume that the multiple case is a trivial extension of the single
case. This is not always so, as discussed in Section III. Yuan-Yun, Quing and
Lian5 0 produced a paper on multiple delays from a sophisticated analytical
view. In addition, Shaughnessy and Kashiwagi 5' have derived a stability indica-
tive function for the multiple delay case.

(ii) The Graphical Approaches:

These methods, such as the Nyquist criterion, can determine exactly the
relative stability of systems with pure time delays. They handle the latter
without any numerical approximations. The Nyquist criterion and its application
to the case of a single delay are outlined in Appendix D. Figures 6a and 6b refer
to the text in this appendix.
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C. THE SATCHE TECHNIQUE:

It can be seen that the simple example used in Appendix D produces a Nyquist
plot difficult to draw. The diagram is even more troublesome to evaluate for
higher order polynomials, not to mention the multiple non-trivial cases.
Satche 17 derived the following elegant procedure which greatly simplifies the
Nyquist plot. One supposes that the characteristic polynomial in equation (43a)
can be separated into pure algebraic and pure exponential parts. Therefore,
F(s, eS) can be written as:

F (s, eS) = F1 (s) - F2 (es) (49)

The loci for Fl and F2 are separately drawn in Figure 6c according to the Ny-
quist method. Looking at that figure, the F, (s) curve is a closed form algebraic
polynomial in s. It closes on itself and part of it resides at an infinite distance
from the origin. The area it encloses is cross-hatched. The F2 (eS) locus, on
the other hand, describes a finite contour around the origin. The area enclosed
by F2 is covered with dots. In the Nyquist Diagram, one recalls that it is
necessary to determine the number of rotations performed by a vector, originat-
ing at the origin, whose head follows the contour F as shown in figure 6a. This
number of revolutions is identical to the number of roots with positive real
parts (unstable roots). In the Satche diagram (Figure 6c), a similar vector is
drawn for each contour in F 1 and F2 . Then, according to equation (49), F(s, es)
is the resultant vector for F1 - F2 o It joins the points A and B in the diagram.
Both ends of the vector AB are now free to move. The reader can follow the
motion of AB as (A and OB are rotated clockwise in Figure 6c. AB revolves
on itself while its magnitude changes. At the lower intersection of Fl and F2

the magnitude is zero and as soon as the intersection is passed, AB emerges
with a complete half rotation. The same phenomenon occurs at the other inter-
section. Thus the intersection points are critical. Each point forces AB to
rotate half a revolution. The Nyquist criterion can now be modified to impose
on AB the condition that if the vector performs one or more complete revolution
on itself then the system is unstable. In summary, three cases arise in this new
criterion called the Satche criterion:

(1) If the two curves in the Satche diagram are completely disjoint, the
system is stable. This case is obvious since the angle of the rotation
of AB is bounded and always less than 360 ° .

(2) If one curve completely encircles the other without intersection, the
system is unstable; this is another obvious case, since at least one
revolution of AB is inevitable.
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(3) If the two curves intersect, then stability can be determined as follows.
Recalling that s = ios in the Nyquist plot, let cw co -< W2 be the param-
eter range of two successive outermost intersection points on the
curve of F1 during which F1 lies within the area bounded by the
F2 curve, (i.e. the area where instability can occur corresponding
conformally to the right-half of the complex s-plane in Figure 6b.)
Then if that part of the curve of F2 corresponding to the same co range
lies completely outside the area bounded by F1 , then the vector AB
suffers no net rotation and the system is stable.

This case is demonstrated by Figure 6c as follows: One notes that the
vector A2 B 2 just above the first intersection proceeds to become A B3
without any rotation, thus indicating stability. Once the upper inter-
section is crossed, A3B 3 rotates 180° to become A4B 4

. The latter
proceeds clockwise, and somewhere after AB, it eventually has the
same direction as A:B 3 indicating one complete revolution. Any
further rotation dictates instability.

To the author's knowledge the above Satche criterion has been applied only
to single pure time delay cases. It is possible to extend the criterion for general
characteristic equations with numerous exponentials provided that the algebraic
and exponential terms can be separated. The proof of this extension involves a
simple axiom from vector algebra, namely the law of uniqueness in vector ad-
dition. This states that to every pair of vectors, there is a unique vector, called
their sum. As an illustration, equation (49) can be written in detail as:

i

F (s, es) = F (s) - F. (eStij - ) (50)

j=2

where F2 , F3 , ... Fi form a series of curves on the Satche diagram, each one
corresponding to a different exponential in equation (43a). One can add up the
vector joining a point on the Fi locus to a corresponding one on the Fi -_1 locus.
The result is a single vector (the addition law) which corresponds to a new locus,
Fi + Fi_ l . The new vector is then added to the appropriate vector for Fi 2

·
The procedure is repeated until a final curve and corresponding vector are ob-
tained containing all of the exponentials. This curve is then compared to F1 (s)
as done in the simplified Satche diagram, in Figure 6c. For the case of numer-
ous exponentials, the F2 curve has more than one intersection with F1 . For
stability, one should consider only the outermost crossovers.
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D. COMPUTER IMPLEMENTATION

The Generalized Satche criterion is readily adaptable to computer pro-
gramming. Such effort is performed in order that the computer can determine
numerically whether a system is stable or not without recourse to a diagram.
The Satche diagram thus becomes secondary and serves only as a graphical
summary of the numerical work.

Proper instructions in FORTRAN are set up for an IBM 360/91 system.
The program, accepts any number of pure time delays, within the capability of
the machine. The graphical capabilities of CALCOMP (Computer Graphics) are
then used and the final result is a Satche diagram for a non-trivial multiple
pure time delay problem drawn by the machine. The application that follows
illustrates the procedure.
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SECTION V

APP LICATIONS

A. AN OPERATIONAL MODEL WITH TWO NON-TRIVIAL PURE
TIME DELAYS:

Consider a real network possessing both an information and a material, or
resource, flow. Information flow is almost instantaneous since it usually in-
volves electrical or electronic means such as telecommunications. Resource
flow, on the other hand, suffers delays in schedule such as those in transpor-
tation and in office bureaucracy. The process is shown in Figure 7 and con-
sists of:

1. A management sector made up of:

(a) A single junction point where feedback information from two desti-
nation points is subtracted from the forward resource flow rate
entering, (data processing),

(b) A control having the decision-making option to vary a factor, K,
which, in turn , takes on fractional values between 0 and 1 and
multiplies the resource flow rate such as to increase or diminish
it.

2. An undesirable forward time lag (1/ [Tl s + 11] ) which deforms the char-
acteristics of the resource rate function. The time-lag occurs quite
often in the real world, as demonstrated by Forrester.

3. An integrator which changes the resource flow rate into a flow of
individual units.

4. Two pure time (or transport) delays, hindering the flow which eventually
reaches two destination points.

5. An information line connecting each of the two destinations with the
original junction, bringing back knowledge on the volume level in time-
past due to the presence of the delays.

The input takes the form of a rate (units/time) since the management sector
traditionally deals with rates. The destination points on the other hand, situated
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at a lower level in the organizational hierarchy, usually report on the volume
level of actual units received. An integration is therefore required to transform
the rate of flow into a level of flow. Figure 8 represents the mathematical flow
graph for Figure 7. One notes that the model constitutes a non-trivial case since
the two destination points report to the same centralized data processor. The
differential-difference equations extracted from Figure 8 are:

x2 (t) = xl (t) - b 1 x6 (t) - b 2 x7 (t) (51)

x3 (t) = K X2 (t) (52)

X4 (t) =e-t/r
1

3 (t) (53)

x5 (t) = 4 (t) d t (54)

x6 (t) = x5 (t - tl) (55)

x7 (t) x= 6 (t - t2) (56)

where

= d
dt

xl (t) = an arbitrary input rate (units/time) originating from the environ-
ment.

x2 (t) = the resultant rate exiting from the junction point (units/time)

x3 (t) = the rate of resource flow (units/time) resulting from the manage-
ment control on x 2 (t).

x 4 (t) = the rate of resource flow (unit/time) transformed by the undesirable
time-lag.
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x5 (t) = the level of resource flow (units), once the above rate (units/time)
is integrated.

x6 (t), x 7 (t)= the levels (units) at the two destinations during which the flow
suffers pure time delays of t

1 and t2 , respectively.

K = the management control (dimensionless) which is to be varied.

bl, b2 = the feedback constants (1/time).

Equation (52) describes the transformation at the central junction; feedback
terms such as b1 x6 (t) and b

2 x
7 (t) (units/time) represent the rate at which

the resource units entering the destination points are being rejected due to
overflow created by constraints. A linear relationship has been assumed be-
tween the rejection rates b 1 x6 (t) and b

2 x7 (t) and the levels x6 (t) and X7 (t),
since a higher "crowding" of units at these receiving stations causes the latter
to produce a higher rejection rate. The central junction processor (such as a
computer) is programmed to take the above into account and thus pre-plan the
schedule by subtracting the rejection rates from the entering resource rate as
shown in equation (52). That difference enters the management control where
an optimal value of K has to be determined. The latter should allow for maxi-
mum entering flow rate and, at the same time, provide asymptotically stable
level fluctuations at the destination points.

B. APPLICATION OF THE GENERALIZED SATCHE TECHNIQUE:

To determine such optimum value of K, the generalized Satche technique is
used. Applying first the Laplace Transform to equations (51-56), six equations
are obtained in the s domain. Combining these into one and rearranging terms
as in equation (5), the characteristic equation becomes:

F (s, es ) = s (r 1 s + 1) + b1 K e + b2 K e(1t2) = (57)

The same result can be obtained directly from the graph in Figure 8 along
with the general equation (43a) for N = 2. The latter becomes:

F (s, es) = 1 + G1 H1 D1 + G2 Hl D1 H2 D2

(58)

=0
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and since in Figure 8,

G1 = - b1

1 1Hi=K'
1H S + un1 S

H2 = unity

D1 = e l-t 1Die

-St2
e

then equation (58) eventually becomes equation (57). Since equation (57) takes
the form of equation (50), one has:

F (s, es) = F1 - F2

F 1 = s (T 1 S + 1)

(59)

(60)

(61)F 2 = - b l K e 1 - b2 K e (t 1 2)

Substituting s = i w (see Appendix D) into equations (60) and (61) one obtains
(i= /-):

'(62)F1 (w) = - T 1 w2 + i w
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-icot -icow(tl+t2)
F

2
(Wc) = - b

1
K e

= - b
1

K {cos (cw tl) - i sin (co tl)}

- b2 K {cos [(t1 + t2).o] - i sin [(t1 + t 2 ).c]} (63)

Separating real and imaginary parts yields:

X1 (w) = Re F1 () = - 1 2 (64)

Y1 (w) =Im F1 (co) = c (65)

X2 (c) = Re F 2 (c) = - b1 K cos (co tl) - b
2

K cos [(t 1 + t 2 ).w] (66)

Y2 (c) Im F2 (co) =bl K sin (c tl) + b 2 K sin [(tl + t
2
).)o] (67)

where Re = "real part of" and Im = "imaginary part of." The constants in
equations (64-67) are arbitrarily selected as:

b1 = b2 = 1 (68, 69)

t 1 =1 (70)

t 2 = 2 (71)

-1 = 1.0 (72)

K 0.45 (73)

remembering that 0 • K • 1.
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C. COMPUTER APPLICATION OF SECTION (B)

The general program described in Appendix E is utilized to obtain the neces-
sary numerical and graphical results for stability. The procedure consists of
the following five major steps.

(i) Generation of Values for X1 , Y 1, X2 , Y2 in Equations (64-67):

The parameterw is varied over an interval of -u to + iT with an incre-
mental value arbitrarily chosen as 7/256. Thus w takes on 513 values. Cor-
responding numerical values for X1 , Y1 , Y2 , and Y2 are generated by the com-
puter utilizing equations (64-67). The output is shown in Figure 9. There, the
top headings state the numerical values of the constants as in equations (68-73).
"B(1) TO B(M)" and "T(1) TO T(M)" represents equations (68-71). Subscripts
appear in parantheses, with M = 2, the number of pure time delays in this case.
Due to the presence of sine and cosine in equations (66-67), X2 and Y2 are
periodic and thus redundant outside the + -T to -7r interval in w. The increment
for ) is selected such as to produce satisfactory smooth curves when computer
graphics are later used.

The nature of equations (64-65) dictates that F, is a parabola symmetric
about x-axis, open to the left and going through the origin on the Satche diagram.
It closes on itself at infinity as in Figure 6c. The area of the right of this parab-
ola is enclosed by F1 . Equations (66-67) indicate that F2 is a closed curve
around the origin and thus F, and F2 intersect once or more in the Satche
diagram. Therefore, of the three possible cases outlined in the Satche criterion
in Section IV, only the last and most general one will be examined here.

(ii) Locating the Regions of Intersection of F1 and F2 :

The set X, and Y1 along with the set X2 and Y2 each corresponds to an
ordered pair (a point) on the F, and F2 curves, respectively. It is first neces-
sary to determine numerically the points where these two curves intersect.
The SCAN SUBROUTINE, a numerical algorithm (see Appendix E), performs this
required step as follows. Starting with the first line of Xi and Yi in Figure 9,
the entire ordered X2, Y2 set is scanned for that pair on F2 closest in distance
to that point (X , Y,) on F1 . The algorithm utilizes the distance definition for
two ordered pairs:

D = Y(X1 - X2)2 + (Y
1

- Y2 )
2 (74)
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The pair X2 , Y2 found closest is at a distance identified as DMIN. Further-
more, if DMIN is less than or equal to the value 0.025 (an estimated very small
term) then X 2, Y2 is not only the closest to X1 , Y1 but at these four values
DMIN is near zero and F i and F2 intersect. The next pair (X1 , Y1) on F 1 in
Figure 9 is selected and the above procedure is repeated until all of the points
on F have been examined. Figure 10 gives the results of the work done by
such algorithm. The code N = 0 signifies that X 2 = Re F2 and Y2 = Im F2 , on that
line, form the closest non-intersection point resulting from the scanning of the
entire set of X2, Y2 . Furthermore, N = 1 indicates a region of intersection. One
notes that F1 and F2 do not have each the same w at N = 0 or 1. The examination
of the column for N in Figure 10 reveals that a long series of O's first appear
followed by a few l's, and then more O's. These 1's indicate a region of inter-
section, with probably the middle line, within these l's, as being the desired
point. The fact that a region and not a point of intersection can be determined
is explained by the small value 0.025 taken as criterion. The smaller it is, the
smaller the 1's region becomes and the better the resolution. However, an
estimated value that is too small, such as less than 0.025, can cause the scanning
algorithm to miss some intersections depending on how close to orthogonal
(perpendicular) the meeting of F1 is to F2 .

(iii) Locating the Outermost Intersections:

The computer program next examines which two regions of intersections
are the outermost ones with an increasing w for F . These two points are
identified in Figure 11. The last column in that figure gives the bounds for w
corresponding to F 2 . The numerical values under "OMEGA OF Fl" in that figure
correspond to the lower and upper bound on ac for F2 and refer to wl and C2,
respectively, in the Satche criterion.

(iv) Determining if the Values of F2 (l,) through F2 (w) are Enclosed by F 1:

The set of pairs X 2 (wI), Y 2 (°cl) through X 2 (w2), Y2 (@2) represent the
critical part of F2 and must be examined for possible intersection with F 1 .
Subroutine SCAN is again utilized, but this time F, and F2 are replacing each
other in the algorithm, namely, the entire F1 is scanned for each selected point
X 2 , Y2 within F2 (w,) to F2 (002 ). If an intersection occurs then a section of that
critical part of F

2
must be to the right of F, and instability is dictated. If no

intersection occurs then two possible cases arise, either F (w l) through F2 (aw2)
is completely to the right or completely to the left of F 1. If it is to the right,
the system is unstable, if to the left, stability is declared, according to the
Satche criterion. The computer program performs the above logic and pro-
duces output of this step in Figure 12. One should read the explanatory N and
L codes in the figure.
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(v) The Satche Diagram:

The program next stores the preceding results (Figures 9 through 12)
on a magnetic tape. Subroutine SATCHE performs this step such that the tape
can be later mounted on a Calcomp (California Computing) System. This hard-
ware electronically deciphers the code and mechanically draws the Satche dia=
gram. The latter is shown in Figure 13 and summarizes the complete effort
for the case of K = 0.45. One can observe five intersections between the para-
bola for F1 , identified with ++++, and F2 . F1 closes on itself at infinity in the
far right plane. That part is not drawn since it is of secondary importance.
The critical part of F2 (wl) through F2 (C 2), identified by **** goes to the right
beyond the outermost intersections and therefore the case is unstable. Figure
14 shows a highly unstable case with K = 1.0. In this instance the resource flow
rate is at a maximum with no management restraint. Figure 15 indicates a stable
system for K = 0.25. Figure 16 shows a case where for K = 0.35 the critical
part of F2 (wc) through F2 (w2) is to the left of F1 and terminates at the outer
intersection points. The value K = 0.35 is therefore an optimal case since it is
the largest K for which the process is still stable.

It is possible to confirm the integrity of the generalized Satche criterion, the
computer program and the plotting routine by performing a relatively fast digital
simulation. Since this approach falls outside of the stability theory presented
so far it becomes a fairly rigorous test. The Continuous System Modeling Pro-
gram (CSMP) package provided by IBM 52, performs such simulation. Figure 17
shows the CSMP model which corresponds to the flow graph in Figure 8. The simulation
produces the time response of the process when an input is applied. It solves the
system of differential-difference equations (51-56) utilizing a digital integration
method, the Adams technique, provides a discretized evaluation of the two pure
time delays, and finally produces a numerical and graphical display of the out-
put to the system. In this model simulation, a unit step function is arbitrarily
chosen as input. One is interested in the fluctuations as time progresses of x7,
the final destination level, representing the output. Figure 18 shows the results
for K = 0.45. First of all the response of x 7 does not appear until time = 3.00.
This represents the overall initial pure time delay of t l (= 1) + t 2 (= 2) = 3.
Furthermore the level at x 7 in Figure 18 shows growing oscillations indicating
an unbounded output thus causing the overall process to be unstable. Figure 19
shows a stable condition when the above simulation is repeated with K = 0.25,
this time. Here, the final destination level fluctuates significantly at the start
but such transient behavior eventually decays to a settled level as dictated by
the control. The stability for this process is evident at the end of 80 time units.
The simulation is performed a final time with K = 0.35. The oscillations for
this case are shown in Figure 20. The oscillation heights slighly decrease
from one peak to the other revealing eventual asymptotic stability but with a
"settling" time that is much longer than for K = 0.25. The decision-making con-
trol is confronted with two alternatives. Depending on the trade-off objective,
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the management can apply a tight control on the resource flow such as K = 0.25
and obtain a fast settling but low, level at the destination; or else liberally in-
crease K to the allowed maximum value of 0.35 for stability, causing level
fluctuations which take a longer time to settle but obtaining a higher final
level. In summary, the graph in Figure 18 reveals an unstable system, for
K = 0.45. For K = 0.25, one has a definite stable case. And for K = 0.35, the
system, though stable, is very close to be uncontrollable. The simulation is
therefore in complete agreement with the predictions of the Satche technique
applied in the two-delay case.

D. OTHER NON-TRIVIAL PURE TIME DELAY CASES:

Since the computer program is a general one, numerous delay cases can
be examined.

(i) Single Pure Time Delay:

This situation is the simplified version with no time lag illustrated in
Appendix D, (Equation D-5). Figures 21 through 23 present three cases for
K = 2, 1, 7/2 and which are unstable and optimal, respectively. In the last case
7/2 has been approximated by 1.57. The Satche functions Fl (cc) and F2 ~) for
equation (D-5) are iw, a straight line through the imaginary axis and -Ke - i ', a
circle of radius K. Furthermore, the fact that F2 in Figures 21 and 23 looks
like an ellipse rather than a circle is no surprise since it is simply due to the
graphic subroutine trying to optimize the area where the diagram is to be drawn;
numerically, Figures 21 and 23 represent a circle. Figures 21 through 23 are
in agreement with the results in Refs. .42 and 43.

Figures 24 and 25 show an unstable and a stable single pure time delay
case with time lag, respectively. The characteristic equation for these two
cases is taken as equation (57) with b2 = 0. These two figures illustrate,
somewhat, how to stabilize a process by manipulating K and T

1
. A decrease in

T in Figure 25 flattens to the right the parabola of Fig. 24 as dictated by
equations (64-65). This allows a larger region of Fl to the left of F2 to be ex-
posed and on which the critical part of F. I(***) can possibly fall, thus producing
a stable case. Another manipulation involves a decrease in K thus concentrat-
ing the critical part of F2 (***) to the left of F1 , as seen in going from Figure
24 to 25. Here, one also notes that a decrease in the time delay improves the
stability.
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(ii) Extension to Cases with Three, Four and Five non-trivial
Pure Time Delays:

The preceding model is extended to incorporate up to five pure time
delays. The general equation (43a) and Figure 4d are utilized with N = 3, 4, and 5.
The characteristic equation for three delays is an extension of equation (57). It
is given as:

F(s, es) = S(T 1 S + 1) + blKe-Stl + b 2 Ke-s(tl+t2) + b
3

Ke -
s (tl+t2+t3) = 0 (75)

with

F1 (s) = S(T 1 S + 1) (76)

and

F
2

(es) = - [blKe-Stl + b
2
Ke-s(tl+t2) + b

3
Ke-S(tl+t2+t3)]

For four delays equation (57) becomes:

F(s, e s ) = s(T1S + 1) + blle-Stl

+ b 2 Ke-s(tl+t2) + b
3
Ke-S(tl+t2+t3)

+ b 4 Ke-S(tl+t2+t3+t4) - O

(77)

(78)

with

F,(s) = s(T7S + 1)

F
2 (es) = - [blKe-Stl + b 2 Ke-S(tl+t2)

+ b
3
Ke-s(tl+t2+t3+t 4 )]
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And for five delays, one has:

F(s, eS) = S(T 1S + 1) + blKe-Stl + b 2 Ke-S(tl+t2)

+ b
3
Ke-S(tl+t2+t3) + b 4 Ke-s(tl+t2+t3+t4)

+ bKe-s( tl+t2+t3+t4+t5)]

Fl(s) = S(T 1 S + 1)

and

F 2 (eS) = - [blKe-Stl + b 2 Ke-S(tl+t2) + b 3 Ke-s(t l + t 2 +t 3 )

(83)

+ b 4 Ke-s(tl+t2+t3+t4) + b5 Ke -
s (tl+t 2 + t3+t4+tS)]

Figures 26 through 28 illustrate near optimum cases (optimal K) for the three-
pure time delay problem. Figures 29, 30, 31 and 32 presents diagrams for the
case of four and five pure time delays, respectively. Figures 29 and 30 shows a
stable situation while Figure 31 indicates instability. Figure 32 gives a stable
case for five pure time delays.
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SECTION VI

CONCLUSION

A. JUSTIFICATION OF THE DIFFERENTIAL-DIFFERENCE EQUATION:

The models forged so far, containing a combination of continuous and dis-
crete equations (with derivatives and differences) can be simplified to a purely
discrete form involving only difference equations. Such a discrete model poses
no difficulties in the stability analysis. In this case, the characteristic poly-
nomials involve the Z transform which acts efficiently on transcendental terms.4 2

As seen, this is not so in the case of the continuous-discrete formulation. In
justification of the continuous approach taken here, the adjectives discrete and
continuous are relative terms depending on the application. As an illustration,
feedback information flow entering the decision-making headquarters in the
form of a telephone call once a day, for instance, appears as a discrete event
among other daily office activities. However, if these daily phone reports serve
to inform the management on a transportation network suffering time delays of
monthly magnitude, then they form a continuous stream while the transportation
flow is of much more discrete nature.

B. COMPUTER TIME:

The total computer time for analyzing the stability of the models presented
so far requires at most 30 seconds of processing per case. Therefore the con-
templation of developing more efficient routines is not pursued.

C. THE CHOICE BETWEEN THE LAPLACE APPROACH AND THE
TIME DOMAIN APPROACH:

The Laplace transform method used here differs noticeably from the theory
developed in the time domain, often called the state variable theory. The first
one is rigorous since it optimizes a model by insuring its stability. The second
approach, instead, heuristically optimizes an objective function. This function
is often left at the analyst discretion to formulate, based on what he feels are
important variables.

Preceding page blank
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D. SUMMARY

/ R. Bellman
s
3 in a survey on the literature related to Kalecki's Model2 2

discusses two characteristic equations, one of the form:

Xs 2 _ s + b - ce - S = 0 (84)

where X, b and c are constants, and the other one as:

s = b(e- stl - e - s t2) (85)

where b is a constant and t2 = t, + 1. The above author comments that the
determination of the roots of eq. (84), the one containing a simple delay, has
been fully examined for stability. Equation (85) on the other hand, containing
two coupled delays is, quoting the author, "considerably more difficult" and
where '"the details are much more perplexing" in the analytical stability ap-
proach. The extended Satche method developed herein, can easily determine
the stability of eq. (85) from the graphical point of view, thus by-passing the
analytical determination of the roots. In addition, since this technique is
computer-based, it serves as a fast and accurate method for a particular user.
Furthermore, the extension to multiple delays is quite impossible without a

computer, justifying the use of a machine. The complexity of Figure 31 supports
such statement.

One notes that, in general, as the number of pure time delays increases, the
allowable value for K decreases allowing for less resource flow. The undesir-
ability of delays in the real world is thus mathematically illustrated. Most im-
portant is the total agreement between the simulation and the criterion predic-
tion. This Satche extension must undergo other tests if it is to become an es-
tablished technique. Finally, the validity of the model for multiple inputs and
outputs and for non-deterministic random variables remains to be demonstrated,
thus providing grounds for further research.
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APPENDIX A

BASIC DEFINITIONS USED IN THIS WORK

1. A system or process: an arrangement of elements connected or related in
such a manner as to form a working entirety.

2. A control system: a system able to regulate or command itself or other
systems.

3. A feedback control system: a control system where the output of some
controlled system variable is compared with the input to the system so that
the appropriate control action may be formed as a function of the output or
input. Feedback increases the accuracy of a control system and favors
overall system stability.

4. Modeling: a mathematical method used to express the real world through:

(a) Functional or differential equations.

(b) Block diagrams, similar to flow charting.

(c) Flow graphs.

Block diagrams and flow graphs are schematic representations of the model's
equations and real components. Appendix B explains the block diagram notation.
The flow graph method appears in Appendix C.
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APPENDIX B

TERMINOLOGY OF FEEDBACK AND CONTROL: THE BLOCK
DIAGRAM AND THE TRANSFER FUNCTION

A. THE BLOCK DIAGRAM:

The block diagram notation is a graphical representation of the overall
cause and effect relationship between input and output of a process or system.
The components or elements of a system is each characterized by a box (or
block) with an arrow penetrating and exiting, representing an input and output,
respectively. The box usually contains a mathematical transformation such as a
differentiation, integration, division or multiplication which acts on the input to
produce the desired output. Figure la illustrates such a representation. All

'the blocks are related to one another and eventually form the overall system.
Figure lb illustrates a generalized beedback control system. In this diagram,
the control block function can be varied, the process is fixed and the feedback
is subtracted (negative feedback) or added (positive feedback) from an input
originating outside the system.

B. THE TRANSFER FUNCTION (T.F.):

The ratio of the output to the input of a system constitutes the transfer
function. This ratio can be determined analytically by equating the output to the
transformed input for each block of the system. This gives a series of coupled
equations which can be combined into a single equation containing the original
input and final output. The ratio of these two is then readily obtained.

The method in Appendix C provides a more elegant and rigorous way of
determining the transfer function for linear, deterministic systems.

Preceding page blank
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APPENDIX C

NETWORK FLOW GRAPHS
AND MASON'S LOOP RULE

A. NETWORK OR SIGNAL FLOW GRAPHS:

Basically, the block diagram notation in Figure lb can be simplified to an
algebraic graph as follows:

INPUT - -H-- OUTPUT

H=NET FORWARD FLOW] 
G=NET FEEDBACK FLOW]

where the transfer function is

OUTPUT GH.= T. F. (C-1)
INPUT 1 - GH

The arrows in the above diagram are called branches while the destination dots
are called nodes. A path is a branch or a continuous sequence of branches which
can be traversed from one signal (node) to another signal (node). A loop is a
closed path which originates and terminates on the same node and, along which,
no node is met twice.

B. MASON'S LOOP RULE:

Equation (C-1) is obtained by equating the incoming flow of values to the
outgoing one at each node, since no accumulation can occur in a flow graph.
This produces a set of equations which reduce to equation (C-1). A shorter
way to derive the transfer function is to utilize Mason's Loop Rule (see ref.
43). The Rule states that, given a flow graph, the transfer function between
two nodes, i and j respectively, is given by:

Preceding page blank
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Pi k i j k

k
T. F. (C-2)

A

where

P..
J k

= k th forward path from variable nodes i to j,

A = determinant of the graph,

A.. = cofactor of the path P..
J k x j k

and the summation is taken over all possible k paths from the k to j nodes. The
cofactor Ai j k is the determinant with the loops touching the kth path removed.
The determinant A is:

N

A = 1 -1 LL +
n=l

M,Q

m=l, q=l

Lm Lq -T L LLLt + · · ·

where L q equals the value of the qth loop transmittance. Therefore, in words,
equation (C-3) signifies that A = 1 - (sum of all different loop branches) + (sum
of branch products of all combinations of two non-touching loops) - (sum of the
branch products of all combinations of three non-touching loops) + .... Two
loops are non-touching if they do not have a common node.

C. ILLUSTRATION OF MASON'S LOOP RULE:

Consider the following flow graph:

H5

G3

INPUT OUTPU
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There are five forward paths connecting the input to the output:

P1 = H1 H H3 (C-3)

P2 = H1 G1 H3 G3 (C-4)

P3 H1 G1 H3 H (C-5)

P4 = H1 H2 H3 G3 (C-6)

P- = H5 (C-7)

There are four self loops:

L1 = H1 H. 2 (C-8)

L 2 = H4 G4 (C-9)

L3 = H1 H2 3 G5 (C-10)

L 4 =- H2 H 3 G 6 (C-ll)

Loops L1 and L 2 do not touch. Therefore,the determinant is:

A = 1 - (L1 + L2 + L4 ) + (L1 L2 ) (C-12)

The cofactor along P1 is obtained by removing from A the loops that touch P1:

Al = 1 - O = 1 (C-13)
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The same applies for P2 , P3 , P4 and Ps:

2 = 1-0= 1

A3= 1 - 0= 1

A4=1-0=1A4 =1 -o = 1

As = 1 - L4

and therefore,

P1 A1 + P2 A2 + P3 A3 + P4 A4 + P5 AS

(C-14)

(C-15)

(C-16)

(C-17)

A

= (H1 H2 H 4 ) + H1 G1 H3 G3 + H I G1 H3 H4 + H5 (1 - H2 H3 G6 )

1 - (Hi H2 G2 +.H4 G4 + H i H2 H3 G5 + H2 H3 G6 ) + H1 H2 H4 G2 G4

(C-18)
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APPENDIX D

THE NYQUIST CRITERION

A. CONFORMAL MAPPING, THE ENCIRCLEMENT THEOREM:

If the variable s, in the Laplace domain, assumes real and imaginary parts
as follows:

s = a + i c (D-l)

(where i = 'T), then the characteristic equation in s also assumes real and
imaginary parts given by:

F (s, eS) = U (o-, 0) + i V (cr, co) (D-2)

According to the theory of complex variables, a conformal mapping from s to
F is defined as follows. To any point (a, c ) in the s-plane, there corresponds
a unique point (U, V) in the F-plane. If the point (o-, co) traverses a closed con-
tour C in s then (U, V) will trace a corresponding contour, F. Figure 6a illus-
trates such mapping. Accordingly, the Encirclement Theorem states that when
C is traversed once clockwise by a point (ao, co) then the corresponding mapped
point (U, V) revolves N times counter-clockwise on F in Figure 6a, such that,

N = -Z (D-3)

where Z is the number of those roots of equation (D-2) which lie within C pro-
vided that none of them lie on C itself. A negative N indicates that F is tra-
versed in clockwise fashion, while a positive N indicates a counter-clockwise
direction. A complete proof is available in Reference 42.
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B. THE CONDITION ON THE s-PLANE FOR ASYMPTOTIC STABILITY

The condition for asymptotic stability, exposed in Section IVA, requires that
all the roots of the characteristic equation to have negative real parts and there-
fore to lie in the left-half of the s-plane in Figure 6a. This is briefly explained
as follows. The response of a linear stable system to an impulse function must
tend to zero as t - co, as stated in Section IVA. This response is generalized as:

(t) A1 e ( l
+ i l ) t + A e (0 2 +i 2 )t + An e( n n)t (D-4)

(i = v-i-)

where A1 , A A2 . . . A n are constants and (a 1 + ico ), (c2 + i W2 ) . . . , (-n + icn)
are the complex roots of the characteristic equation (D-2). It can be seen from
equation (D-3) that if the o-' s are negative, then y(t) decays exponentially thus
satisfying the requirement for asymptotic stability. Abiding to such prerequisite,
one cancels all possibilities for unstable roots to lie in the left-hand plane. This
leaves only the co -axis and the right-hand s-plane in Figure 6a to examine for
unstable roots. The general contour C then specializes to a newcontour, C',
which is shown in the left portion of Figure 6b. It consists of the whole imaginary
axis between w = - Xc to c = + co, along with the infinite semi-circular arc en-
compassing an area to the right of the direction of the arrow, namely, the com-
plete, bounded right-hand plane.

The conformal mapping of this semi-circular closed contour C' onto the
F-plane produces a closed F contour. First, one considers the semi-circular
arc portion (excluding the w axis) of C' on which s can be written in terms of
polar coordinates as:

s = Re' i (7T/2 > 6 > - 7T/2) (D-5)

where R = infinity, i = v-1. The mapping of this portion onto the F-plane gene-
rates a clockwise F portion which also bounds the entire right hand F-plane
with the imaginary F axis. The equation of this F portion is immaterial since
every point on it is at an infinite distance from the origin. It can be taken as a
semi-circle with infinite radius. It is referred to as part of the F-locus at in-
finity. Returning to the s-plane, the imaginary s-axis remains to be examined
from s = w = -co to s = w = + co. Depending on F, the mapping produces various
loci which then connect with the part of the F-locus at infinity to form a closed
contour. The area enclosed depends again on the direction of the arrows on F.
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C. THE NYQUIST CRITERION:

The Criterion basically combines the requirements of section (A) with those
of section (B) by determining the number of roots which reside inside C' of the
s-plane in Figure 6b, (i.e. those roots with positive real parts and therefore
those which cause instability). It can be stated as follows:

According to the Encirclement Theorem, the number of times, N, that the F-
locus encircles the origin in a clockwise sense corresponds to the number of
roots within C' in the s-plane, i.e. those roots with positive real parts and which
cause the system to be an unstable one, according to the stability condition on
the s-plane. Therefore, if the F-locus never encircles the origin completely,
then the system is (asymptotically) stable, and unstable otherwise.

D. ILLUSTRATION:

The previous criterion is best illustrated as follows. Consider the charac-
teristic equation containing one pure time delay as:

F (s, eS ) = s + K e - s = 0 (D-6)

where K is an arbitrary constant.

The mapping of s onto F(s, e s) consists of two parts. First, the semi-
circular portion of C' in the s-plane is represented by Equation (D-4). As
previously stated, the F(s, e s) contour corresponding to every point (oc, ow) on
that section is itself a semi-circular curve traced at an infinite distance from
the origin. It is shown in the F-plane drawn in the right portion of Figure 6b
and labeled I F(s, eS) =co . The second part of the mapping traces F (iwo, ei ° )
for " varying from - into + o. This tracing is done by firstly substituting iLo for
s in equation (D-5). The result is

i + K e-iw = 0 (D-7)

Since e - i = cos co - i sin o, one separates the real and imaginary parts of
equation (D-6) to yield:
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X1 (co) = Real F = K, [cos co]

Y1 (c) = Imaginary F = K [i (co- sin co)] (D-9)

For every co on the imaginary axis of the s-plane, there corresponds an ordered
pair (X1 (co), Y1 (co)) on the F-plane. Numerical values are calculated for X1

and Y1 for a varying co. The result is the mapping of w onto F. It is shown as
the "wiggle-like" portion along the imaginary axis of the F-contour in the right-
hand portion of Figure 6b. One notes that three curves appear each correspond-
ing to a different value of K, namely 1.0, 7T /2, and 2.0, respectively. All three
curves connect with the semi-circular portion of F labeled IF(s, eS)I = 0o at
infinity. The mapping, called the Nyquist plot, therefore completely encloses
an area to the right of the direction of the arrows (shaded in Figure 6b) in F.

It can be seen that for K = 2 the F-locus encloses the origin twice in the
clockwise sense, once very close to it and another time very far from it at
R = co so that N = -2 and therefore Z = -N = 2, indicating two roots with positive
real parts in C'. The cases for K = 1.0 and 7r/2 on the other hand reveal no
encirclement and therefore constitute stable cases. The value K = mr/2 is at the
threshold of stability. It represents the largest allowed value for stability.
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APPENDIX E

LISTING OF THE COMPUTER PROGRAM DEVELOPED TO IMPLEMENT
THE SATCHE CRITERION FOR MULTIPLE DELAYS AND TO PERFORM

COMPUTER GRAPHICS

A. THE SUBROUTINES USED:

The following program is written in FORTRAN IV. The implementation
utilized an IBM 360/91 operating under Release 20, a relatively high speed,
large memory machine.

Subroutine SCAN determines the intersection points while subroutine
SATCHE converts the numerical results into a special code which is transferred
on a 9-track magnetic tape. This tape is then mounted on a CALCOMP 780
(California Computing) System which in turn draws the desired plots on a drum
using ink and paper.

The subroutines PLOTS, PLOT, LINE, NUMBER, SCALE, and AXIS are
made available by the CALCOMP company and assist in drawing the plots ac-
cording to a desired scale, format and size. CALCOMP also provides a
repertory of symbols, letters, and other characters which label the
diagram.

B. LIST OF COMPUTER SYMBOLS IN CONTEXT WITH THE MAIN
WORK (IN APPROXIMATE ORDER OF APPEARANCE):

X1 = X1 (l) = Re F1

X2 2 (co) = Re F2

Y1 = Y1 (= ) = Im F1

Y2 = Y2 (c) = Im F
2

BUFFER = A dummy vector used as a "scratch pad" by subroutine
SATCHE.
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OMEGA = a vector containing all the values for w.

B = a vector containing the feedback factors, bi, in order of ap-
pearance in the network forward flow.

T = a vector containing the exponents of the delays in order of ap-
pearance in the network forward flow.

PI = 7

PIB = selected maximum value for w.

DPIB = selected increment value for o .

I = subscript for OMEGA, XI Y1, X2, Y2 initially set at 1 and
finally set at 513.

NFMAX = selected maximum number of computer runs per batch.
(one run per delay case)

NFILE = file number assigned to each case, initially set at 1 and finally
set at NFMAX.

M = number of pure time delays in the particular problem being
processed.

XK = K= management control

TAU1 = IT = time lag

MM = dummy subscript

N1, N2, N3, N1iMAX, N2MAX, N3MAX = various pointers of secondary im-
portance used to produce a convenient output format.

W = an intermediary value for OMEGA.

XDPI = an increment smaller than DPIB (of secondary importance)

XT = a temporary value for T

XX2 = a temporary value for X2 initially set at 0

YY2 = a temporary value for Y2 initially set at 0
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K = a dummy subscript

TEMPX2 = another temporary value for X2

TEMPY2 = another temporary value for Y2

WP = a value used to transform w into a fractional part of 7 to be-
come readable in the output printout.

N = a code indicating "intersection" or "no intersection."

IMAX = 513 = maximum number of values for X1, YI and of OMEGA
used to evaluate X1 and Y1.

JMAX = 513 = maximum number of values for X2, Y2 and of OMEGA
used to evaluate X2 and Y2.

IIMIN = subscript of the OMEGA corresponding to o , the smaller
value at which one of the outermost intersections occurs.

IIMAX = subscript of the OMEGA corresponding to w 2 the larger value
at which the other outermost intersection occurs.

J = temporary subscript

ID = the number of values of OMEGA for F1, X1 and Y1 on F1
between the outermost intersections.

IIIMIN = subscript of a reconstructed OMEGA for F1, X1 and Y1 with
the subscript ID = 1 to ID = IIMAX - IIMIN. This is necessary
so that the curve F1 and F2 have the same order of magnitude
when the Satche diagram is performed.

SUBROUTINE SCAN: (additional symbols to the above)

D = distance between (X1, Y1) and (X2, Y2).

DMIN = smallest distance between (X1, Y1) and (X2, Y2).

JX = subscript identifying the point (X2, Y2) closest to the given
point (X1, Y1).
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SUBROUTINE SATCHE: (additional symbols to the above)

XL, YL = values specifying the paper area on which the Satche diagram
is to be drawn.

XSUBX, YSUBY, YSUBX, XSUBY = CALCULATED origin of the Satche dia-
gram. (Optimized values such that the diagram is centered
within the area specified by XL, YL).

D = a temporary value used in the above optimization.

JJ, NN = dummy subscripts.

XN = a value used for proper format (of secondary importance)
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DATE = 72214 16/08/18

C

C NYQUIST-SATCHE DIAGRAM
DIMENSION X1(600), X2(600).YI(600).Y2(600) ,3UFFR (7500).OMEGA(600).
IB(I0),T(10)

C

C
C SETTING UP A WORK AREA FOR PLOTTING

CALL PLOTS(BUFFER,7500.0)

C
C

C

C

C CONSTANTS DEFINED
PI=3.14,159
PIB=PI
DPI=16.*16.

C

C

C READING THE NUMBER OF COMPUTER RLNS DESIRE)
READ (5977) NFMAX

77 FORMAT(12)
C

C

DO 888 NFILE=I,NFMAX
C READING IN ORDER THE DESIRED NUMEER OF RUNS.
C FEEDBACK MULTIPLICATIVE FACTORS,AND THE EXOONEhTS OF THE
C PURE TIME DELAYS.

READ (5,99)NFtLEM. XK.TAUI,(B(MM).MM=1,5),(T(t ),MM=1 5)'
99 FORMAT(12,Ii,1-2(F5.2))

C

C

1=1
771 WRITE(6,1 )NFILEMXK.TAUI (B(MM),MM=I'5) ,(T(k¥)'4MM=1.5)

I FORMAT('{l",///3X,
2'COMPUTER RUN NUMBER 'I12, 9X,'SATCHE DOTA GENERATION'/%3X,
7'THE NUMBER OF DELAYS IS ',12./*3X.
8'THE CONSTANTS ARE:' 9/3X,
I'K= ' FB8.3,CX,'TAUI=' ,F8.,3 //X3X,
3'8(1) TO 'B(M):'"5(F8.3.2X)*/.3X,

5'T(1) TO T(M):"' 5(F8.3,2X))

772 WRITE(6,3)
3 FORMAT(//X4X, 'OMEGA OF Fl',8X.'FE Fl,1IOX.
1'IM Fe1.lOX*eRE F2',1OX,'IM F2'. 9X,'CMEGA IF F2')

C
C THE NEXT TWO STATEMENTS ARE USED FOR A
C DESIRED PRINT-FORMAT.

N1=1
N 1MAX=26-( M*2)

773 W--PI
XDPI=(PI/DPI)/2.

C GENERATION OF F(S).
4 Xl(I)=-TAU1*W**2

61 Yl(I)=W
C GENERATION OF F(EXP(S)),THE CURVE WITH DELAYS. -

XT=T( )
XX2=0.
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DATE = 72214 16/08/18

YY2=0.

DO 67 K=I,M
TEMPX2=B(K )*XK*COS(XT*W)
TEMPY2=B(K)*XK*SIN(XT*W)
IF(K-M) 69,68e65

69 XT=XT+T(K+1)
68 X2(I)=-(XX2+TEMPX2)

XX2=-X2(I)
Y2( I )=YY2+TEMPY2
YY2=Y2(I)

67 CONTINUE
WP=256.*W/PI
OMEGA(I)=WP

777 WRITE(6.2) WP.XI(I).YI1¥I)X2(I),Y2(1).WP

2 FORMAT(3X,F6.1,'/256 PI '.5X,4(1PEIO.3.5X),PF6.1,'/256 Pi')
IF(NI-NlMAX)8910,1C

10 NI=0
WRITE(6.1 )NFILE.MXKTAU1.(B(MM).MM=1.S),(T(M),tMM=1,5)
WRITE(6*3)

8 NI=NI+1
88 IF((.W+XOPI )-PI8)12 ,9 9
12 1=1+1
7 W=W+PI/DPI
GO TO 4

9 CONTINUE

19 WRITE(6,1 ')NFILE.M.XK.TAUI1(B(MM).MM=1,5).(T(IvN),MM=1,5)
97 WRITE(6,23)'
23 FORMAT(/,3XemFINDtNG ALL POINTS CF INTERSECTICN')
96 WRITE(6,201)
20 FORMAT(/.3X.'OBSERVE THE FOLLOWI G CODES BLOW'./3X,

1'N=O : NOT A REGION OF INTERSECTION'./,3X,

2'N=1 : A REGION OF INTERSECTION')
95 WRITE(6.21)
21 FORMAT(//,4X, 'OMEGA OF F1',6X.'FE FI',8X.

1'4IM Fl', 8X,'RE F2'.C8X,'IM F2', 7X,'OMEGA JF F2',4X.'N')
98 IMAX=I

JMAX=I
I IMAX=O
IIMIN=999
N2=1
N2MAX=19-( M*2)
DO. 32 I=I,IMAX
CALL SCAN(IXIX(I),YI(I).X2,Y2,N,_,;JMAX)

24 WRITE(6.26) OMEGA(I),Xl(I),Y(Il ) X2(J) Y2(J).CnEG4(J),N
26 FORMAT(3XFe6.,'/256 PI' 3X,4(IPEIO.3,3X) ,)PF6.1.'/256 PI'92X.12)

IF(N2-N2MAX)30.31.jl

31 N2=0

WRITE(6,1 )NFILE,M,XKTAU1,(B(MM),MM=1 5) .(T(tM.).MM=1,5)
WRITE (6.23)
WRITE(6,20)
WRITE (6.21)

30 N2=N2+1
C LOCATING THE OUTERMOST INTERSECTIONS.

45 IF(N) 32,32,27-
27 IF(I-IIMIN)29,29,34

29 IIMIN=I
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J1=J

34 IF(I-IIMAX) 32,33.33
33 IIMAX=I

J2=J
32 CONTINUE

WRITE(6,1 )NFILE.MXK,TAUI,(B(MM),MM=I.S),(T(Mt),MM=1.5)
WRITE(6.35)

35 FORMAT(//,3X,' THE OUTERMOST INTERSECTIONS OCCJS AT')

WRITE(6.3)
WRITE(692) CMEGA(I IMIN),XI(IIMIN),YI(IIMIN),

I X2(JI),Y2(JI),CMEGA(J1)
WRITE(6'2)OMEGA(II MA X).XI(IIMAX) .Yl(I]IMAX).

IX2(J2).Y2(J2) CMEGA('J2)
C CHECKING IF F2(w) IS OUTSIDE F1(1) FOR THE RANGE
C OF OMEGA OF F2 VARYING FROM OMEGA SUB IIMI'4 TO
C OMEGA SUB IIMAX

WRITE(6*1 )NFILEt.MXKTAUIC(B(MM).MM=,5) ,(TC(MW),MM=1,5)
WRITE (6·40)

40 FORMAT(/ ,3X,'**CHECKING IF F2 CF OMEGA SJS I IMIN THROUGH .·/3X.
1'F2 OF OMEGA SUB IIMAX LIES OUTSIDE OR INTERSECTS Fl**')
WRITE(6620)
W.RITE(6,62)

62 FORMAT(3X,
1'L=-I : X2 IS T0 THE RIGHT OF FI·UNSTABLE .ASE'./.3X·
2'L=1 : F2 INTERSECTS Fl,UNSTABLE CASE'./,3X.

3'L=0 : F2 IS OUTSIDE OF Fl,STABLE CASE')
WRITE(6,55)

55 FORMAT(//,4X, 'OMEGA OF Fl',6X,'RE Fl',8X,
I'IM Fl'. 8X,'RE F2OS08X,'IM F2', 7X,'OMEGA 3F F2'.4X*.N',3X.'L')
N3=1
N3MAX=18-(M*2)

DO 51 J=IIMIN,IIMAX
44 CALL SCAN(J.X2(J).Y2(J).xl Y, N.I,IMAX)

IF(N) 46.44647
47 L=l
52 WRITE(6.53) OMEGA(I),XI(I),YI(I),X2(J),Y2(J).
40MEGA(J).N·L

53 FORMAT(3X·Ff.1' /2E6 Pl'.3X,4(1PE10.3,3X),3J'F6.1,'/256 PI',2X,12,
12X.12.' UNSTABLE')
GO TO 56

46 IF(X2(J)-X1(I))7.71.172
72 L=-l

WRITE(6,53) OMEGA(I)X1(I).YI(I) ·X2(J).Y2(J),
40MEGA(J).N·L

GO TO 56
71 L=O
49 WR-ITE(6,48) OMEGA(I)·Xl(I)Y14I )·X2(J).Y2(J),
40MEGA(J)·N·L

48 FORMAT( 3X.Ff.1. · I'/2E6 PI ' ,3X,4(1PE10.3 ,3 X) , ))F6.1,'/256 PI' 2X,12,
12X.12,' STABLE')

56 IF(N3-N3MAX)54·f4,64
64 N3=0

wRITE(6·1 )IFILEeM·XK.TAUI.(B(MM),MM=I,5)t(T(IV~)eMM=1·5)
WRITE(6.40)
WRITE(6.20)
WRITE(6.62)
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WRITE(6.55)
54 N 3=N 3+1
51 CONTINUE

C PREPARING THE CALCOMP DIAGRAM
I IM IN= IIM IN
ID=IIMAX--I IMIN
DO 50 1=1 ID
XI( 1)=XI( I IMIN)
Yt(I)=YI(IIMIN)
IIMIN=I IMIN+I

50 CONTINUE
CALL SATCHE(XI YtI. X2 ,Y21ID JM AX,BUFFERt'4,XKTAUI ,NFILEo
,T, llIMINIIMAX)

888 CONTINUE
CALL PLOT(O0.,. 99 9g)

999 STOP
END
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SUBROUTINE SCAN(I . XI .YI *X2.Y2 .N.J (KJMAX)

DIMENSION X2(1) Y2( )
C. SUBROUTINE USED TO FIND POINTS OF INTERSECTION OF
C TWO CURVES.

DMIN=999.
DO 3 J=1.JMAX
D=SORT(( XI-X2(J))*2+( Y-Y2(J))*. 2)
IF(D-DMIN)2,2.3

2 DMIN=D
JX=J

3 CONTINUE
IF(DMIN-O.025) , 7

7 N=O
RETURN

6 N=1
RETURN
END
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SUBROUTINE SATCHE (XI eYI.X2*Y2J* IJtBUFFER,M,XK,TAUINFILE*8,
IT IIIMINIIMAX)
DIMENSION XI(I) YI,(l).X2(1) Y2(1 )BUFFER(II)B(I).T(I)
XL=9.
YL=7.

CALL PLOT (.5..5.23)
CALL SCALE(X2,XL,1 ,1)
XI(J+I)=X2(1+1)
Xt(J+2)=X2(1+2)
CALL' SCALE(Y2.YL 1 ,1)
YI(J+I)=Y2(1+1)
YI(J+2)=Y2(I+2)

C DETERMINING ORIGIN OF AXES FOR X2.Y2
(LOCATING HEIGHT OF X-AXIS)
XSUBX=O.
IF(Y2(I+1)--0) 1.2,2

2 XSUBY=O.0
GO TO 5

1 D=Y2(1+1)+YL*Y2(I+2)
IF (D-O.) 3,3,4

4 XSUBY=-Y2( I+1)/Y2( 1+2)
GO TO 5

3 XSUBY=YL
C
C
C LOCATING WIDTH OF Y-AXIS

5 YSUBY=O.
IF(X2(I+1)-O.)e,7.7

7 YSUBX=O.
GO TO 10

6 D=X2(I+1)+XL*X2(I+2)
IF(D-0.)8. 811

11 YSUSX=-X2( I+1)/X2( 1+2)
GO TO 10

-8 YSUBX=XL
10 CALL AXIS(kSUBX.XSUBY,'

IXLO.tX 2(I+0X2( 2(1+2))
CALL AXIS( YSUBX.YSLBY.'

1Y2(1+1).Y2(1+2))
CALL LIN;E( X2Y21I.1,0,0)
CALL LINE(XIY1,J,1,+3.03)
IID1IIMAX-IIIMIN

DO 12 JJ=I.IID
X2(JJ)=X2( IIIMIN)
Y2(JJ)=Y2( IIIMIN)
I IIMIN=IIIMIN+I

12 CONTINUE
X2(JJ+ 1 )=X2( I+1)
X2(JJ+2)=X2(I+2)
Y2(JJ+I)=Y2(1+1)
Y2(JJ+2)=Y2(1+2)
CALL LINE( X2,Y2.JJ .1.--3.-11)
CALL PLOT(YSUBX+O. 20 .YL.23)
CALL PLOT(4.8,0.·22)
CALL PLOT( 0..-1I.l22)
CALL PLOT(-4'.8.0.,22)

REAL F1 F2'.-32.

IMAG Fi ,F2'25,YL,90 .,
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CALL PLOT(0.,1.1.22!

CALL SYMBOL(0.15.-0.25,0.1522HSATCHE DIAGRAM ,0..22)
CALL NUMBER ( 16.- .4.0. 1XK0O. 2)
CALL NUMBER(2.7.-0.4.'0.1,TAUI 0. 2)
CALL SYMBOL (2.8.-0.25,0. 10,17H-ELAY(S) PAOBLEM,O.*17)
CALL NUMBER(2.700,-0.25,0.10OFLOAT(M) O.·-I)
CALL SYMBOL(0.15- 0.4.0.1 30HCON ST ANTS: K= ,TAUI= .9.30)
CALL SYMBOL(0.15,-0.55,0.10,43HTHE EXPONENTS- FC THE PURE TIME DEL

lAYS ARE:.0.,43)
CALL SYMBOL(0. 15,-0.85,0.1,45HTHE-FEECBACK :OEFFICIENTS FOR THE DE
2LAYS ARE:,0.e45)
XN=O0
0014 NN=1.5
CALLNUMBER(0.15+XN,-0.7,0.1,T(NN),O.' 1)
XN=XN+O 8

14 CONTINUE
XN=O 

DO 15 NN=I.E
CALL NUMBER(O.I5+XN,-I.,O .IB(NN).O.,I)
XN=XN+0 .8

15 CONTINUE
CALL SYMBOL(1.2.-6.7*0.1.27HCALCCMP CCMPUTI-R-DRAWN PLOT.O0.27)
CALL SYMBOL (1.2e-. 85,0. 137HPRCGRAM-PLOT DESIGN : JACQUES PRES

1S.0-.37)
CALL SYMBOL (1'.2,-7.00.0.1,12HDATE: 8/1/72.0.,12)

CALL PLOT(-4.0,-0.2.3)
CALL PLOT(-3.7C,-0.2.2)
CALL SYMBOL( ~3.659, -0.25,0.I10C27HF(EXP(S)):CURVE WITH DELAYS,

10.·27)
CALL SYMBOL(-4.,-0.65,0.1,30H++++ F(S):CURE WITH NO DELAYSO.,30)
CALL SYMBOL(-4.,.-1.0S.0.1.37H**** PART 'OF (EXF(S)) CORRESPONDING

1,0..37)
CALL SYMBOL(-3.65,-1.20.0.1.28HTC OMEGA OF F(S) BCUNDEO BY .0.,28)
CALL SYMBOL(-3.65.--1t35.0. 128HITS OUTER I4TERSECTIONS WITH.0-.28)

CALL SYMBOL(-3.65.'-1.50O.1,9HF(EXP(S)) 0.-I)
CALL PLOT(10.--7.5.-23)
RETURN

END
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APPENDIX F

THE MATHEMATICAL FUNCTIONS USED IN THE CSMP SIMULATION
(SEE FIG. 17)

Computer Notation

A. Y = STEP (P)
(STEP FUNCTION)

Mathematical Notation

Y=0 t<P
Y-1 t2P

B. Y = REALPL (IC, P. X) PY= Y= X

Y(O) = IC ( 1 

(SIMPLE LAG)

C. Y = INTGRL (IC, X) Y = X dt + IC

Y (0) = IC

(INTEGRAL)

D. Y= DELAY (N, P, X)

P = DELAY TIME

N = NUMBER OF POINTS
SAMPLED IN INTERVAL P
(INTEGER CONSTANT)

DEAD TIME (DELAY)

Y(t) = X(t - P) t 2 P

Y= t<P

(e- sp)

Preceding page blank -
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BLOCK

dxr INPUT FOR OUTPUT(a rate) A L Jx(t)
dt EXAMPLE

fdt

Figure la. The mathematical box as a component of a system.

ENVIRONMENT

/j- DECISION-MAKING FORWARDFLOW
SECTOR I

REFERENCEI(INPUT-FEEDBACK I CONTROLLED
CONTROLLING · PROCESS OUTPUT
AEDAK VARIABLES WITH DELAYS

FEEDBACK 
FEEDBACK FLOW ELEMENTS

Figure lb. I A generalized feedback control system.
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INPUT
Al

1
TS+1

1st ORDER
TIME LAG

+1

T, S2+T S+1

2nd ORDER
TIME LAG

0

¢0

C
DELAY

OUTPUT

A

OUTPUT

A____ _ _ _

OUTPUT

O-tT-

)

Figure 2. Various time lag and puie time delay transformation functions.
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INPIIT

x1 x 1 x x x e
l

x-
F(s) ------ P-c00- em~ ~ 00--c X6(s)

· ~ ~-~ r+la~. / ,,

1/s = INTEGRATOR

e-Stl= PURE TIME DELAY

OUTPUT

K,a = MULTIPLICATIVE CONSTANTS

1 =TIME LAG
TS+1

Figure 3o. The network graph for 6 problem with one pure time delay.

F(s) X6 (S)
_- -H (s) - O- D(s) --- 10O

-G(s) ~ Slh
OR
APL

ix6
F-- -cHD - 0

/

Figure 3b. The algebraic diagram for Figure 3a.
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INPUT

Figure 4a. A trivial extension to two pure time delays.

INPUT

Figure 4b. The reduction of F'igure 4a to two single delays.
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SINGLE FEEDBACK
JUNCTION \

INPUT 1- 00H1 D1 H2 D2
INPUT be % -- 0DI b OUTPUT

Figure 4c. The non-trivial extension to two plure time delays.

SINGLE FEEDBACK
JUNCTION, ,.
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Figure 4d. The general non-trivial extension to N-pure time delays.
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iV

C

6 ev)-PLANE

L, Xo ) s -PLANE E

Figure 6a. The conformal mapping fro'm the s plone onto the F(s, eS)-plane.

(

(SPECIALIZED s-PLANE)

ImF(s,es )

ReF
(s,es )

Figure 6b. The Nyquist plot for F(s, es) =s + e - ' =0.
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(A,B are moving points)

F2 (es): CURVE WITH DELAYS

-.-.-.-- FF1 (s): CURVE WITH NO DELAYS

*(an area is enclosed if it lies to the
right of the arrow on the locus)

---- RESULTANT VECTOR AB

>XX AREA ENCLOSED BY F1

"::Z" AREA ENCLOSED BY F2

Figure 6c. The Satche diagram.
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-F (EXP(S3)tCURVE WITH DELAYS

+**+ FI(SICURVE WITH NO DELATS

ANNN PART OF F(EXP(SJI CORRESPONDING
TO OMEGA OF F(S) 80UNDED BY
ITS OUTER INtERSECTIONS WITH
Fa(EXP (S)

o

SRTCHE IRGRRM 2-DELART(S) PROBLEM
CONSTANTSi K= 0.45 .TAUI= 1.00
THE EXPONENTS FOR THE PURE TIME DELAYRS AREs
1.0 2.0 0.0 0.0 0.0

o THE FEEDBACK COEFFICIENTS FOR THE OELATS AREs
G_. 11.0 1.0 0.0 0.0 0.0

REALF , F2

CRLCOMP COMPUTER-ORAWN PLOT
PROGRAM-PLOT OESIGN s JACOUES PRESS
ORTE, 8/1/72

Figure 13. First Satche diagram for a case with two delays.
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-F,(EXP(Sll)CURVE WITH DELRTS

**+* Fe(S sCURVE WITH NO DELAYS

**-u PRRT OF F,(EXP(S)) CORRESPON
TO OHEGR OF F(S) BOUNDED BY
ITS OUTER INTERSECTIONS WITH
Fz(EXP (S )

SATCHE DIRGRRM 2-OELAY(TIS) PROBLEM
CONSTANTS, K= 1.00 .TRUI= 1.00
THE EXPONENTS FOR THE PURE TIHE DELAYS AREs
1.0 2.0 0.0 0.0 0.0
THE FEEDBACK COEFFICIENTS FOR THE DELAYS AREi
1.0 1.0 0.0 0.0 0.0

2.50

CALCOHP COHPUTER-DRAWN PLOT
PROGRAMR-PLOT DESIGN s JACQUES PRESS
DATEs 8/1/72

Figure 14. Second Satche diagram for a case with two delays.
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O

-F,I(EXP (Sl,CURVE WITH DELAYS SATCHE DIAGRAM 2-DELAYTS) PROBLEM
CONSTANTSt K= 0.25 .TAUI 1.00
THE EXPONENTS FOR THE PURE TIHE DELAYS AREs

++++ F(S),CURVE WITH NO DELAYS 1.0 2.0 0.0 0.0 0.0
Xo THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE,

wmmm PART OF F&(EXPIS)) CORRESPONOING- 1.0 1.0 0.0 0.0 0.0
TO OMEGA OF 6FS) BOUNDED BY
ITS OUTER INTERSECTIONS WITH
F (EXP (S) !

o0

CALCOMP COHPUTER-DRRNN PLOT
PROGRAM-PLOT DESIGN ; JACQUES PRESS
DATEs 8/1/72

Figure 15. Third Satche diagram for a case with two delays.
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- F(EXP (S) CURVE WITH DELAYTS

+*. F,(S)sCURVE WITH NO DELAYS

wNN. PART OF F,(EXP(S)) CORRESPONDING
TO OMEGA OF F(S) BOUNDED BT
ITS OUTER INTERSECTIQ#.%l-TW...
Fj(EXP (5)) r.\",

SATCHE DIAGRAM 2-DELAT(S) PROBLEM
CONSTANTSI K= 0.35 ,TAUI= 1.00
THE EXPONENTS FOR THE PURE TIME DELAYRTS ARE
1.0 2.0 0.0 0.0 0.0

O THE FEEDBACK COEFFICIENTS FOR THE DELATS ARE:
1.0 1.0 0.0 0.0 0.0

0

00 o020 0.10 0o 0.80 1.00oo' o; 20 0. 0 0.60 1 o.a o L oo

Figure 16. Fourth Satche diagram for a case with two delays.
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****CONTlINUnr,S SYSTFM MnOELI N' Pi- CGDA4***e

*** VFRSY.O) 1.3 ***

LABEL tTMF DFLAY MnDFL UNIT ST'F INPUT
CfrNSTAsT F1=1 . ,2=1 .
DAQAMETFP XK=0.45· TAIJI =l1 · .*

T= I . T=2 .
DYNAM T'
X 1= STF3 ( O )

X 2=-- X 1- 1 X6-2*t X7
X 3= XK* X 2
X4=QEA.L L( 0., TAU .X3 
X F= IN TGRL ( 0 . X4)
Xf=O=FL Y( 10. T I X5)
X7 =DELAY( 10 T2 :X6)
T IE4P ')ELT=0. 05,FINT[M=20. ·PPR)FL=1.0 ·O()Tr)FL= 1. 
MT HOD ADAMS
PRTPLT XK
Chln

PAPAMFTFP XK=O.25 (PROGRAM IS RERUN AT THIS STEP)
FND
PAPAMcTFO X=O.*35 (PROGRAM IS RERUN AT THIS STEP)
FND
STOP

OUTPUT VAPTARLE SEQUF4CF
X6 X7 Xl XP X3 Z7ZOC .3 xa 

.JTDUTS TNPJTS APRAMS INTFGS + MFM qLKS F7 r Tn DN oATA C );
12(500) 3A(1400) 10(400) 2+ 2= 4( 300) (50 C) 1 

FNDJOR

NOTATION:
XK= K (AS IN TEXT)
REALPL, INTGRL, DELAY, STEP = FUNCTIONS DESCRIBED IN APPENDIX F.
METHOD ADAMS = INTEGRATION METHOD USED. (SEE REF. 52)
TIMER = DESCRIBES THE SELECTED TIMING SEQUENCE.

Figure 17. Continuous System Modeling Program (simulation) for the case of two delays.
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TIME DELAY MD0EL UN4T STEP INPUT

-1,
X7

0.0
0.0

0.0
0.0
1 .6572F-01
5. 0530E-01
8.5712E-01

1.1128E 00
1.184RE 00
1.0273E 00
6.745SE-01
2.3200E-01

-1.5673E-01
-3.5369E -01
-2.7464E-01
7.7014E-02
6.0409E-01
1.1408F 00
1.5039E 00
1.5538E 00

1.2464E 00
6.5637E-01

-3. 105E-02
-6.0776E-01
-8.4637F-01

-6. 4355E-01
-3.0878E-02

8.1673E-01
1.6286F 00
2.1232E 00
2.1034E 00
1.5317E 00

5.5676E-01
-5.2163F-01
-1.3424E 00
-1.6016E 00
-1.1620E 00
-1.1433F-01
1.2344E 00
2.4473E 00
3.0965F 00
2.9106E 00
I.eP16F 00

2.89C0E-01
-1.3669F 00
-2.5256E 00
-2.7461E 00

-1t.717? 00
-1.081QE-OI

2.015,F 00
7.e02AF 00

MINIMUM

.2101E 01
I

X' 7 VERSUS TIME

A GE I

MAX IMlJ

I1.0575SE 01
I

---------------------------
------------------------- 4-

----------------------------.

---------- -------------- ------

------------ -------------.

…------------- --------- .--
----------- ------------ ----.

-4------------.---------- -
---------- …--------… ----- 4
-------------------------- 4.

------------------------- 4.
---------- …-------------4

------ …….'.. ......--- 4..

……---------- -…-…- - --- -- 4-- .

---------------------------
----------- ---.--------- --

____ _------------ _

--------- --------- ----.--

….'…...-…-…--… . . -- …-- ----- ..

…__ _ _ _…_4 .__ _ _ _

Figure 18. Output to Figure 17 with K =0.45.
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TIME
0.0
I.OOOOE 00
2.0000E 00
3.0000E 00
4.OOOOE 00
5.OOOOE 00
6.OOOOE 00

7.0000E 00

9.OOOOE 00
I.OCOOE 01
1.1000E 01
1.,2000E 01
1.3000E 01

1.4000F 01
1.5000E 01
1.6000E 01
1.7000E 01
1.8000E 01

1.9000E 01

2.0000E 01
2.1000E 01
2.2000E 01
2.3000E Cl
2.4000E 01
2.5000E 01
2.6000F 01
2.7000E 01
2.8000E 01
2.9000E 01
3.OOOOE 01
3.1000E 01
3.2000E 01
3.3000F 01
3.4000E 01
3.5000E 01
3.6000E 01
3.7000e 01
3.8000E 01
3.9000E 01
4.0000E 01
4.1000E 01
4.2000E 01
4.3000E 01
4.4000E 01
4.5000E 01
4.6000E 01
4.7000e 01
4.8000E 01
4.9000E 01
5.0000E 01

L

I



TIME DELAY MODEL UNIT STEP INPUT

MINIMUM

-1.2101E 01

X7
4.6103E 00
4.076OE 00
2.2703E 00

-2.S934E-01
-2.o160E 00
-4.411 7 E 00
-4.4594E 00
-2.8095E 00

1.1811E-OI
3.4289E 00

6.01S8E 00
6.Q399E 00

5.7295F 00

2.6204E 00
-1.4840E 00
-5.2611E 00
-7.3869E 00

-6.9893E 00

-3.9877E 00
8.1219E-01

5.9184E 00
9.6052E 00

1.0489E 01

q..-0148E 00
2.7531F 00

-3.7349E 00
-9.3286E 00
-1.2032F 01
-1.0667E 01
-5.3538E 00

X7 F RSUS TIME MAX I'UM

1.0575E 01

I

…---------------- -

….....-… -.--- .... 4-4

…------------------ ----- ……----
-- -------- -- ----------- --- _------- - -s

----------------..-----

-------------.
…----------

------------- .

----------- - ----

----------------------------

…---…----4-

_- - -- - -_ _____ _ ___ 

Figure 18. (Continued)
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7

TIME
5.1000E 01

5.2000E 01
5.3000E 01
5.4000E 01

5.5000E 01

5.6000E 01
5.7000E 01
5.8000E 01
5.9000E 01
6.0000E 01
6.1000E 01
6.2000E 01
6.3000E 01
6.4000E 01
6.5000E 01
6.6000E 01
6.7000E 01
6.8000E 01
6.9000E 01
7.OOOOE 01

7.1000E 01
?.2003F 01
7.3000E 01
7.4000E 01
7.5000E 01
7.6000E 01
7.700F 01
7.8000E 01
7.9000F 01
8.OOOOE 01

OA GE 2



TIME DELAY M3DEL UNIT STEP INPUT

MINIMUM
0.0

X7
0.0

0.0
0.0
0.0

9.2065E-02
2.8214E-01

4.9230E-01

6.7s32E-01

8.0689E-01

8.5620E-01
8,2467E-01

7.2930E-01
5.9470E-01

4. 623E-01

3.4264E-01

2.7509E-01
2.6257E-01
3,.0153E-01
3,7794E-01

4.7144E- 01
5.6039E-01

6.2655E-01

66,5355E-01

6.5350E-01
6.1666E- 01
5.5939E-01

4.9607E-01

4.4074E-01
4.0416E-01
3.9192E-01
4.0385E-01

4.3470E-01
4.7584'- 01
5. 1741E-01

5.5062E-01
5.6940E-01

5.7142E-01

5.5816E-01

5.341 3E-0
5.0563E-01

4.7916F-01

4.6007E-01
4,515'F-01

4.5423E-01

4.6625E-01
4.e402E-01

5.0315E-01
5.1945E-01
5.2981F- 01

5.3271E-01

5.2834E-01

X7 %ERSUS TIM- MAX IMUM
8.5620E-01 I

I

…-----
---------- … ----
_ _ _ _ _ _ _ _ _ _ _ __%_
... _ % 

---.------- -------- ----- ........----------------- ------- '

---------- …-------
-------------.--------

..........-- …............ --+
…-4---------- .----------- ---------

_--_________-_-_-_-- - _____ ____- --- ___- -- ___ _____

------------------------ --

.----------------------

-----------.----- ,

------------------------- 4

------------------------ …-----4

-------------------------------- …

---------------------- …--…

------------------------- 4.

------------------------ 4--

---------------------------- 4

--------------------- --------

---------- …----------…--------…

…-……_________.__ 4___ __ __ _ __ __ __ _

…__ _ __ _ _ _ __ _ _ _ 4.__ _ __ __%

…___ ___ ___ _…_____ _ _ ___ __%

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

.......................... 

_ _ _ _ _ _ _ _ _ _ _ 

Figure.19. Output to Figure 17 with K = 0.25.
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TIME
0 .0

I.000OF 00
2.0000E 00
3.OOOOF 00

4.0000E 00

5.0000E 00
6.0000E 00
7.0000F 00

9.00OO00 00
9.0000E 00

1.0000E 01
I.100OE 01
1.2000E 01

1.3000E 01

1.4000E 01
1.5000E 01
1.6000E 01

1.7000E 01
1.8000E 01

1.900OE 01
2.0000E 01

2.1000E 01
2.2000E 01

2.3000E 01
2.4000E 01

2.5000E 01

2.6000E 01
2.7000E 01
2.8000 01
2.9000E 01
3.0000E 01

3.1000F 01
3.2000E 01
3.3000E 01
3.4000E 01
3.5000F 01

3.6000E 01

3.7000E 01
3.8000E 01
3.900OE 01

4.0000E 01

4.1000E 01
4.2000F 01

4.3000E 01
4.4000F 01

4.5000E 01

4.6000E 01
4.7000E 01
4.8000E 01

4.9000E 01

5.0000F 01

De GE

I



TIME DELAY M30EL UNIT STEP INPUT

MINIMUM X7 .. RSUS TIM- MAXIMUM

0.0 A .5620E-01

TIME X7 I

5.10OOE 01 5.1857E-01 -----------------------------.

5.2000E 01 5.0594E-01 ------------------------------

5.3000E O1 4.9349E-01 ---------------------------+

5.4000E 01 4.8382E-01 ----------------------------4

5.5000E 01 4.7?65E-01 ---------------------------
5.6000E 01 4.7857E-01 -

5.7000E 01 4.e301E-01 ----------------------------+

5.8000E 01 4.9054E-01 ----------- ----------------
5.9000E 01 4.9920E-01 ----------
6.0000F 01 5.0706E-01 -----------------------------.

6.1000E 01 5.1254E-01 ---------------------------- +

6.2000E 01 5.1475E-01 --------------------'----------

6.3000F 01 5.1361E-01 ----------------------------- +

6.4000E 01 5.0972F-01 ------------------------------
6.5000E 01 5.0423E-01 -------------------------------
6.6000E 01 4.9846E-01 ----------------------------

6.7000E 01 4.9367E-01 ---------------------------+

6.8000E 01 4.9076E-01 ---------------------- ---- +
6.9000F 01 4.9012E-01 -- 4

7.0000E 01 4.9164E-01 ----------… -----------_----+

7.100OE 01 4.9475E-01 ------------------------ ---

7.2000F 01 4.9861F-01 ----------------------------

7.3000E 01 5.0233E-01 ------------ ------------- +

7.4000E 01 5.0514E-01 -------------

7.5000E 01 5.0655E-01 ----------------------------- +

7.6000E 01 5.0641F-01 ---------------------------+
7.7000E 01 5.0494E-01 ----------------
7.800E 01 5.0259E-01 -----------------------------

7.9000E 01 4.9997E-01 --------------- +

5.0000E 01 4.9764E-01 ----------------------------

Figure 19. (Continued)
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TIM' DELAY M)DEL UNIT STEP INPUT

X7
0.0

0.0
0.0

. 0
1.2889E- 01
3.9400E- 01
6.7793E-01
9.0743E-01

1.0245F 00
9.9422E-01

9.2593E-01
5. 674E-01
2.9262E-01
7.6824A-02

-1.9587E-02
2.9534E-02
2.0957E-01

4.6950o-01
7.3631F-O1
9.3556F-01

1.0121F 00
9.4527e-01

7.5469E-01
4.9426E-01
2.3704E-01
5.4775E-02

-2.1728E-03
8.1304E-02

2.9105E-01
5.4062E-01

7.872sE-01

9.5222E-01
9.9003E-01
8.9092F-01

6. 339e-01

4.2599E-01
1.O084E-01
4.3390O-02
2.4215E-02
1 3787--0o
3.5182E-01
6.05758-01
8.2b65F-O1

9.5846E-01

9.5959F-01
8.3252E-01

6.1 34E- 01
3.6416E-01

1.5428E-01

4.2132E-02

5.8395F-02

MINIMUM
-2.1531E-02

X7 ¥EPSUS TIME 4AXIMUM

1.0306E 00

I
-4

-+

-4

------- 1

_---------------… +

-- -------- - --------- --- -- ------ -+

---------- - ----------- -------_ -_------------- 

------------------------ _-----

-----------

-------------------------

--------- ------------- -------------

---------- ------------------------- ----------

_---------------------------------- -

_------------- --- _-

…------------

---_ ---------- -

----------------------- ----- ___-- +

_--------- ----------- 

---------- -------

---------- -----------

- - - - - - - - - --_-_- - - --_- ---_-- - - - -- - - - --- - - - - --_-
...--- _. ----.------ --.--------------- _ __

--_ ---- _--- ----------- _------

---- ---------

-.. _ _.. .

---
…--

---_ -_

_-----4-

Figure 20. Output to Figure 17 with K =0.35.
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TIME
0.0
1.OOOOE 00
2.OOOOE 00

3.OOOOE 00

4.OOOOE 00
5.0000F 00
6.0000E 00
7.0000O 00
9.0000F 00

.0000E 00

.0000E 01
1.1000E 01
1.2000E 01

1.3000E 01
1.4000E 01
1.5000E 01

1.6000E 01

1.7000E 01
1.O0E 01
1.9000E 01
2.0000E 01
2.1000E 01
2.2000F 01
2.3000E 01
2.4000E 01
2.5000E 01
2.6000F 01
2.7000E 01
2.8000E 01
2 .9000E 01
3.0000E 01

3.1000E 01
3.2000E 01
3.3000E 01
3.4000E 01
3.5000E 01
3.6000E 01
3.7000E 01
3.8000E 01
3.900F 01
4.0000E 01
4.1000E 01
4.2000E 01
4.3000E 01
4.4000E 01
4.5000E 01
4.6000E 01
4.7000E 01
4.8000E 01
4.9000E 01
5.00001 01

DAGE

I



TIME DELAY M3DEL UNIT STEP !NPUT

MIN
-2.15

X7
1.C773F- 01

4.2051- 01
6.6408E-01
8.6037E-01
9.5491 -01

9.2198E-01
7.7156E-01

5.4632F-01

3.0 55F-01
1.2740E-01
5.0297E-02
9.9109E-02

2.5944E-01

4.8587E-01
7.1483F-01

8.8245E-01

9.4235E-01
9.7849E-01

7.0946E-01

4.8305E-01

2.6278E-01
1. 100F-01
6.7037E-02

1.4506E-01
3.2159E-01

5.4679E-01
7.5754E-01

8.9514E-01

9.2167F-01

8.3042F-01

NIMUM

531E-02
!

X7 . RSUS TIMI MAXIMUMt
1.0306E 00

I
---------- …

--------------------- …

----

............------------ ----

------------------------ -------- -----. -- -

…+........ _. -__ _ _ …............+'1-

…...…._ _

…...+4 -

…+ _

…+..... . . . . . .. .. _

----....................... __

…__ _ _ _ _ _ _ _ _ _ _ _ _

…+ _ _ _ _ _ _ _ 

…-- --_ _- -_ 

…__- - -+

…_ _…+

…4 _ _ _ _ _

Figure 20. (Continued).
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T IME
5.1000E 01

5.2000E 01
5.3000E 01
5.4000E 01

5.5000E 01

5.6000E 01
5.7000E 01

5.8000E 01

5.9000E 01
6.0000E 01

6.1000E 01

6.2000E 01
6.3000F 01

6.4000E 01
6.5000E 01
6.6000E 01

6.7000E 01
6.9000E 01
6.9000E 01

7.0000E 01
7.1000E 01
7.2000E 01

7.3000E 01
7.4000E 01
7.'i00O 01

7..0005E 01

7.7000E 01
7.R000E 01

7.9000E 01
9.OOOOE 01

OA GE 2



0
(Uj

tm01
-F,(EXP S)IsCURVE WITH DELAYS

++++ FISItCURVE WITH NO OELAYS

-NNH PART OF F(EXP(S)) CORRESPONDING -
TO OMEGA OF F(S) BOUNOED BY 
ITS OUTER INTERSECTIONS WITH
F,zEXP (SI .

SATCHE DIAGRAM 1-DELAT(S) PROBLEM
CONSTANTSt K= 2.00 TAUI= 0.00
THE EXPONENTS FOR THE PURE TINE OELAYS RREi
1.0 0.0 0.0 0.0 0.0
THE FEEDBACK COEFFICIENTS FOR THE DELAYS AREt
1.0 0.0 0.0 0.0 0.0

!.50

CALCOMP COHPUTER-ORAWN PLOT
PROGRAN-PLOT DESIGN t JACQUES PRESS
OATEl 8/1/72

Figure 21. First Satche diagram for a single delay case.
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o

-F.(EXP(S)IsCURVE WITH DELATS

+*t+ FIS!:CURVE WITH NO DELATS
0

rm#n PART OF F&(EXP(SI) CORRESPONDING -
TO OMEGR OF F(SI BOUNDED BT
ITS OUTER INTERSECTIONS WITH
F,(EXP IS) )

SATCHE OIAGRRM I-DELAY(S) PROBLEM
CONSTANTSs K= 1.00 TAUI= 0.00
THE EXPONENTS FOR THE PURE TIRE DELAYS ARE.
1.0 0.0 0.0 0.0 0.0
THE FEEDBACK COEFFICIENTS FOR THE DELAYS AREs
1.0 0.0 0.0 0.0 0.0

CALCOMP COMPUTER-DRAWN PLOT
PROGRAM-PLOT DESIGN t JACQUES PRESS
ORATEs 8/1/72

Figure 22. Second Satche diagram for a single delay case.
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0

-F,(EXP(S)) CURVE WITH DELARTS

**+ F(S) lCURVE WITH NO DELRTS

.... PART OF F(EXP(SI) CORRESPONOING*-
TO OMEGA O F,(S) BOUNDED BY
ITS OUTER INfERSECTIONS WITH
F, (EXP (S) !

u.

SATCHE DIAGRRM I-DELAY(SI PROBLEM
CONSTRNTS K= 1.57 .TARUI= 0.00
THE EXPONENTS FOR THE PURE TIME OELARTS AREs
1.0 0.0 0.0 0.0 0.0
THE FEEDBACK COEFFICIENTS FOR THE DELAYS AREs
1.0 0.0 0.0 0.0 0.0

2.00

CALCOMP COPUTER-ORRAWN PLOT
PROGRAR-PLOT DESIGN * JRCQUES PRESS
ORATE 8/1/72

Figure 23. Third Satche diagram for a single delay case.
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0

c,.

-F,(EXP(S)),CURVE WITH DELAYS

*++ F,(S)sCURVE WITH NO DELAYS

uNNN PART IF F,(EXP(S)) CORRESPONDING
TO OMEGA OF F CS) BOUNDEO BT
ITS OUTER INTERSECTIONS WITH
Fz(EXP (SI))

SATCHE DIAGRARM 1-DELAY(S) PROBLEM
CONSTANTS, K= 1.00 ,TAUI= 1.50
THE EXPONENTS FOR THE PURE TIME DELAYS ARE,
1.0 0.0 0.0 0.0 0.0
THE FEEDBACK COEFFICIENTS FOR THE DELAYS ARE8
1.0 0.0 0.0 0.0 0.0

CALCOMP COMPUTER-DRAWN PLOT
PROGRAM-PLOT DESIGN , JACQUES PRESS
DATEt 8/1/72

Figure 24. Fourth Satche diagram for a single delay case.
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a

-F,(EXP(S)hICURVE WITH DELAYS SATCHE OIRGRRM L-DELAY(S) PROBLEM
CONSTANTS K= 0.50 ,TAUI= 1.00
THE EXPONENTS FOR THE PURE TIRE DELAYS AREt

++** F,(S)3CURVE WITH NO DELAYS 2.0 0.0 0.0 0.0 0.0
o THE FEEDBACK COEFFICIENTS FOR THE DELAYS AREsto
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00

CALCOMP COMPUTER-ORRWN PLOT
PROGRAM-PLOT DESIGN i JRCQUES PRESS
DATEr 8/1/72

Figure 25. Fifth Satche diagram for a single delay case.
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-F,(EXP (S))CURVE WITH DELAYS

*++, F,(S)tCURVE WITH NO DELAYTS

SATCHE DIAGRRM S-OELAY(S) PROBLEM
CONSTRNTS. K- 0.17,TAUID 1.00
THE EXPONENTS FOR THE PURE TIRE DELARTS ARE
1.0 2.0 3.0 0.0 0.0
THE FEEOBACK COEFFICIENTS FOR THE DELAYS AREI
1.0 1.0 1.0 0.0 0.0

00 0.40 0.60 0.80
REI Fl, Ft

CALCOMP COHPUTER-DRAHN PLOT
PROGRRA-PLOT OESIGN t JACOUES PRESS
OATE. 8/1/72

Figure 26. First Satche diagram for a case with three delays.
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TO OMEGA OF F(SI BOUNDED 8Y
ITS OUTER INTERSECTIONS WITH
FIEXP(SI)

SRTCHE OIRGRRM S-DELAY(S) PROBLEM
CONSTANTS1 K- 0.20 .TAUI- 1.75
THE EXPONENTS FOR THE PURE TIME DELATYS AREt
1.0 1.0 2.0 0.0 0.0
THE FEEDBACK COEFFICIENTS FOR THE DELAYS AREs
1.0 1.0 1.0 0.0 0.0

;00 _ 0.20 _ 0.40 0.0 0.80

CALCOMP COMPUTER-ORAIN PLOT
PROGRAM-PLOT DESIGN I JACQUES PRESS
ORATE 8/1/72

Figure 27. Second Satche diagram for a case with three delays.
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+**+* F(S)sCURVE WITH NO DELAYS

*WNN PART OF F(EXP(SI) CORRESPONDINGc-
TO OMEG OF F (S) BOUNOEO BY
ITS OUTER INTERSECTIONS HITH
FJIEXP (S)1

SRTCHE ODIRGRRM 3-OELRAY (S' PROBLEM
CONSTRNTS7 K= 0.15 .TAUI= 2.00
THE EXPONENTS FOR THE PURE TIME DELAYS AREs
1.0 2.0 3.0 0.0 0.0
THE FEEOBACK COEFFICIENTS FOR THE DELAYS AREs
1.0 1.0 1.0 0.0 0.0

0.aO

CRLCOMP COMPUTER-ORAWN PLOT
PROGRAM-PLOT DESIGN I JARCUES PRESS
DATEt 8/1/72

Figure 28. Third Satche diagram for a case with three delays.
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a
o

-Fj(EXP S))sCURVE WITH DELAYS

*..+ F(S)1CURVE WITH NO OELAYS

mmuN PART OF F(EXP(S)I CORRESPONDING -
TO OMEGA OF F(S) B0UNDOE BY 
ITS OUTER INtERSECTIONS WITH
F, (EXP (SI)

SRTCHE OIRGRRM U-DELAY(S) PROBLEM
CONSTANTS: K= 0.11 .TAUI= 1.00
THE EXPONENTS FOR THE PURE TIME DELAYS AREt
1.0 2.0 1.0 2.0 0.0
THE FEEOBACK COEFFICIENTS FOR THE DELAYS AREi
1.0 1.0 1.0 1.0 0.0

i 00 0 0.2 Z 0.30 0 40

CALCOHP COHPUTER-DRAWN PLOT
PROGRAM-PLOT DESIGN t JACQUES PRESS
DATE: 8/1/72

Figure 29. Satche diagram for a case with four delays.
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-F,(EXP(S))sCURVE WITH OELAYS

t*. ,* (S) tCURVE WITH NC OELAYS

Figure 31. Second Satche diagram for a case with five delays.
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